package main

import (
"errors"
"fmt"
"log"
) // 单链表
// 特征:
// 1. 每个节点都包含指向下一个节点的指针 next
// 2. 链表逻辑上是序列,但在内存中存储是不规则的
// 实现:
// 1. 头节点(根节点) head 单链表的起始位置,头节点不存放任何数据
// 2. 链表用来实现队列、栈、有序序列(插入排序)
// 3. 链表方法:
// a. 添加一个节点 Add
// b. 移除一个节点
// c. 遍历节点 // ValNode 值节点,存放所需数据,至于数据是什么,已经不重要,重要的是有一个指向下一个值节点的指针 next
type ValNode struct {
// data 存放数据
data interface{}
// 指向下一个节点的值节点指针,如果没有则为空地址 nil
next *ValNode
} // SingleLink 单链表,包含一个指向链表头部的指针 head
type SingleLink struct {
// 头指针 head 指向链表的头部
head *ValNode
} func NewSingleLink() *SingleLink {
return &SingleLink{
head: &ValNode{},
}
} // AddNode 在尾部添加一个节点: 找打尾部节点,将尾部节点的next指向新增加的节点
func (sl *SingleLink) AppendNode(v *ValNode) {
// 1. 找到尾部
tmp := sl.head
for tmp.next != nil {
tmp = tmp.next
}
// 2. 在尾部添加一个节点
tmp.next = v
} // 在尾部删除一个节点: 判断链表是否为空,判断链表是否只有一个元素,找到链表最后的上一个元素将next置为nil
func (sl *SingleLink) PopNode() (v *ValNode, err error) {
// 1. 判断是否是空链表, 空链表则返回空链表错误
if sl.head.next == nil {
err = errors.New("链表为空")
return
} // 2. 判断链表是否只有一个元素,如果为一个元素则将 head头节点的next置为 nil
if sl.head.next.next == nil {
v = sl.head.next
sl.head.next = nil
}
// 3. 找到链表的上一个元素将next置为nil
tmp := sl.head
for tmp.next.next != nil {
tmp = tmp.next
}
v = tmp.next
tmp.next = nil
return
} // 在头部删除一个节点: 判断链表是否为空,判断链表是否只有一个元素,将链表头指向链表头指向的下一个元素
func (sl *SingleLink) PopLeftNode() (v *ValNode, err error) {
// 1. 判断是否是空链表, 空链表则返回空链表错误
if sl.head.next == nil {
err = errors.New("链表为空")
return
} // 2. 判断链表是否只有一个元素,如果为一个元素则将 head头节点的next置为 nil
if sl.head.next.next == nil {
v = sl.head.next
sl.head.next = nil
}
// 3. 获取链表头指向的下一个元素,并将链表头指向的下一个元素的下一个元素
v = sl.head.next
sl.head.next = sl.head.next.next
return
} // ListLink 遍历列表,判断链表是否为空
func (sl *SingleLink) ListLink() {
// 1. 判断是否是空链表
if sl.head.next == nil {
fmt.Println("SingleLink empty")
return
}
// 2. 遍历链表
tmp := sl.head.next
for tmp != nil {
fmt.Println(tmp.data)
tmp = tmp.next
}
} // 通过链表的 AppendNode 和 PopNode实现了栈
// 通过链表的 AppendNode 和 PopLeftNode实现了队列 func main() {
sl := NewSingleLink()
node1 := &ValNode{
data: 100,
}
node2 := &ValNode{
data: 200,
}
sl.AppendNode(node1)
sl.AppendNode(node2)
node3, err := sl.PopNode()
if err != nil {
log.Println(err)
}
fmt.Println(node3)
sl.ListLink()
}

  

Go-单链表-栈和队列的更多相关文章

  1. Python实现栈、队列

    目录 1. 栈的Python实现 1.1 以列表的形式简单实现栈 1.2 以单链表形式实现栈 2. 队列的Python实现 2.1 以列表实现简单队列 2.2 以单链表形式实现队列   本文将使用py ...

  2. Linux内核链表复用实现队列

    有了前面Linux内核复用实现栈的基础,使用相同的思想实现队列,也是非常简单的.普通单链表复用实现队列,总会在出队或入队的时候有一个O(n)复杂度的操作,大多数采用增加两个变量,一个head,一个ta ...

  3. 线性表:实现单链表和子类栈(Stack)及单向队列(Queue) [C++]

    刚刚开始学习c++.之前c的内容掌握的也不多,基本只是一本概论课的程度,以前使用c的struct写过的链表.用python写过简单的数据结构,就试着把两者用c++写出来,也是对c++的class,以及 ...

  4. java实现单链表、栈、队列三种数据结构

    一.单链表 1.在我们数据结构中,单链表非常重要.它里面的数据元素是以结点为单位,每个结点是由数据元素的数据和下一个结点的地址组成,在java集合框架里面 LinkedList.HashMap(数组加 ...

  5. 栈和队列----将单链表的每K个节点之间逆序

    将单链表的每K个节点之间逆序 给定一个单链表的头节点head,实现一个调整链表的函数,使得每K 个节点之间逆序,如果最后剩下不够K 个节点,则不调整最后几个. 例如: 链表:1—>2—>3 ...

  6. [数据结构]——链表(list)、队列(queue)和栈(stack)

    在前面几篇博文中曾经提到链表(list).队列(queue)和(stack),为了更加系统化,这里统一介绍着三种数据结构及相应实现. 1)链表 首先回想一下基本的数据类型,当需要存储多个相同类型的数据 ...

  7. 数据结构(c语言第2版)-----了解链表,栈,队列,串

    关于链表我觉得这都是最基本的东西,但是不常见,在实际的应用中很少的使用,了解它会用就OK,不需要研究的那么深,除非做那种内存压缩,存储方面工作. C语言中动态申请空间 malloc() q=(dlin ...

  8. &10 基本数据结构——栈,队列和链表

    #1,栈(stack) 定义[来自百度]:栈(stack)又名堆栈,它是一种运算受限的线性表.其限制是仅允许在表的一端进行插入和删除运算.这一端被称为栈顶,相对地,把另一端称为栈底.向一个栈插入新元素 ...

  9. 线性表 及Java实现 顺序表、链表、栈、队列

    数据结构与算法是程序设计的两大基础,大型的IT企业面试时也会出数据结构和算法的题目, 它可以说明你是否有良好的逻辑思维,如果你具备良好的逻辑思维,即使技术存在某些缺陷,面试公司也会认为你很有培养价值, ...

  10. 数组、链表、栈、队列和STL

    数组 数组是一种最基本的数据结构,它是内存上的一块连续存储空间.正因如此数组的随机访问很方便.但数组也有其固有的限制,大小分配后不能改变. STL中的数组 STL中的Array是静态数组模板,就是我们 ...

随机推荐

  1. ASR项目实战-决策点

    针对语音识别的产品,分别记录设计.开发过程中的决策点. 实时语音识别 对于实时语音识别来说,客户端和服务端之间实时交换语音数据和识别的结果. 客户端在启动识别时,即开始发送语音数据,期望在等待较短的时 ...

  2. ASR项目实战-交付过程中遇到的内核崩溃问题

    当前参与交付的语音识别产品服务,算法模块基于经典的Kaldi,算法中的一部分运行在GPU之上. 算法团队采用的是声学模型+语言模型的1-pass方案.这个方案的特点在于,语言模型数据文件(HCLG文件 ...

  3. Feign源码解析:初始化过程(三)

    背景 前面两篇讲了下,在一个典型的引入了feign.loadbalancer.nacos等相关依赖的环境中,会有哪些bean需要创建. 其中第一篇讲了非自动配置的bean,第二篇是自动配置的bean. ...

  4. 调试分析Linux 0.00引导程序

    Bochs虚拟机的配置文件 简介 Bochs 虚拟机的配置文件 描述待启动的虚拟机的配置,例如内存大小.启动镜像.网络功能.存储配置. Bochs运行后,会先查找配置文件,解析模拟器要虚拟的系统相关信 ...

  5. 浅谈6种流行的API架构风格

    前言 API在现代软件开发中扮演着重要的角色,它们是不同应用程序之间的桥梁.编写业务API是日常开发工作中最常见的一部分,选择合适的API框架对项目的成功起到了至关重要的作用.本篇文章将浅谈一下当前6 ...

  6. gmap构建离线地图,用createCustomerTiledLayer方法,瓦片地址尾部多了 ?x={x}&y={y}&z&{z} 导致无法显示地图。

    gmap构建离线地图,用createCustomerTiledLayer方法,瓦片地址尾部多了 ?x={x}&y={y}&z&{z} 导致无法显示地图. function in ...

  7. 在Global Mapper中导入点的文本格式

    目录 有时候想在Global Mapper快速显示一个点的具体位置,来不及去创建一个具体的矢量文件.一个最快速的方式就是将这个点写在文本文件中导入: 13149831.629692005 281725 ...

  8. 鸿蒙开发丨设备内UIAbility的几种交互方式

    本文分享自华为云社区<设备内UIAbility交互:无缝体验与高级技巧>,作者: 柠檬味拥抱. UIAbility组件间交互(设备内) 在设备内,UIAbility(用户界面能力)是系统调 ...

  9. 数仓性能优化:倾斜优化-表达式计算倾斜的hint优化

    本文分享自华为云社区<GaussDB(DWS)性能调优:倾斜优化-表达式计算倾斜的hint优化>,作者: 譡里个檔 . 1.原始SQL SELECT TMP4.TAX_AMT, CATE. ...

  10. 云小课|MRS基础原理之Oozie任务调度

    阅识风云是华为云信息大咖,擅长将复杂信息多元化呈现,其出品的一张图(云图说).深入浅出的博文(云小课)或短视频(云视厅)总有一款能让您快速上手华为云.更多精彩内容请单击此处. 摘要:Oozie是一个基 ...