spark 笔记2
一、Spark Shuffle 的发展
- Spark 0.8及以前 Hash Based Shuffle
- Spark 0.8.1 为Hash Based Shuffle引入File Consolidation机制
- Spark 0.9 引入ExternalAppendOnlyMap
- Spark 1.1 引入Sort Based Shuffle,但默认仍为Hash Based Shuffle
- Spark 1.2 默认的Shuffle方式改为Sort Based Shuffle
- Spark 1.4 引入Tungsten-Sort Based Shuffle
- Spark 1.6 Tungsten-sort并入Sort Based Shuffle
- Spark 2.0 Hash Based Shuffle退出历史舞台
1. 未优化的 HashShuffle
2. 优化后 HashShuffle (引入了 Consolidation 机制)
3. Sort-Based Shuffle
由于 HashShuffle 会产生很多的磁盘文件,引入 Consolidation 机制虽然在一定程度少了磁盘文件数量,但是不足以有效提高 Shuffle 的性能,适合中小型数据规模的大数据处理。
Spark 2.3中,唯一的支持方式为 SortShuffleManager,SortShuffleManager 中定义了 writer 和 reader 对应shuffle 的 map 和 reduce 阶段。reader 只有一种实现 BlockStoreShuffleReader,writer 有三种运行实现:
- BypassMergeSortShuffleWriter:当前 shuffle 没有聚合,并且分区数小于 spark.shuffle.sort.bypassMergeThreshold(默认200)
- UnsafeShuffleWriter:当条件不满足 BypassMergeSortShuffleWriter 时, 并且当前 rdd 的数据支持序列化(即 UnsafeRowSerializer),也不需要聚合, 分区数小于 2^24
- SortShuffleWriter:其余所有shufle
特点:
BypassMergeSortShuffle
1. 算法适用于没有聚合,数据量不大的场景, BypassMergeSortShuffleWriter 所有的中间数据都是在磁盘里,并没有利用内存。而且它只保证分区索引的排序,而并不保证数据的排序
2. 和Hash Shuffle中的HashShuffleWriter实现基本一致, 唯一的区别在于,map端的多个输出文件会被汇总为一个文件。 所有分区的数据会合并为同一个文件,会生成一个索引文件,是为了索引到每个分区的起始地址,可以随机 access 某个partition的所有数据
SortShuffleWriter
1. 会有不同的数据结构: PartitionedAppendOnlyMap(需要内部聚合), PartitionedPairBuffer 不需要内部聚合
2.处理步骤:
1. 使用 PartitionedAppendOnlyMap 或者 PartitionedPairBuffer 在内存中进行排序, 排序的 K 是(partitionId, hash(key)) 这样一个元组。 2. 如果超过内存 limit, 我 spill 到一个文件中,这个文件中元素也是有序的,首先是按照 partitionId的排序,如果 partitionId 相同, 再根据 hash(key)进行比较排序 3. 如果需要输出全局有序的文件的时候,就需要对之前所有的输出文件 和 当前内存中的数据结构中的数据进行 merge sort, 进行全局排序
UnsafeShuffleWriter
1. 触发条件:Serializer 支持 relocation,
2. 没有指定 aggregation 或者 key 排序,
3. partition 数量不能大于指定的阈值(2^24),因为 partition number 使用24bit 表示的
4. 特点: 原始数据首先被序列化处理,并且再也不需要反序列,在其对应的元数据被排序后,需要Serializer支持relocation,在指定位置读取对应数据
小结:
下图是相关的uml图
ShuffleHandle类 会保存shuffle writer算法需要的信息。根据ShuffleHandle的类型,来选择ShuffleWriter的类型。
ShuffleWriter负责在map端生成中间数据,ShuffleReader负责在reduce端读取和整合中间数据。
ShuffleManager 提供了registerShuffle方法,根据shuffle的dependency情况,选择出哪种ShuffleHandler。它对于不同的ShuffleHandler,有着不同的条件
- BypassMergeSortShuffleHandle : 该shuffle不需要聚合,并且reduce端的分区数目小于配置项spark.shuffle.sort.bypassMergeThreshold,默认为200
- SerializedShuffleHandle : 该shuffle不需要聚合,并且必须支持序列化时seek位置,还需要reduce端的分区数目小于16777216(1 << 24 + 1)
- BaseShuffleHandle : 其余情况
getWriter方法会根据registerShuffle方法返回的ShuffleHandler,选择出哪种 shuffle writer,原理比较简单:
如果是BypassMergeSortShuffleHandle, 则选择BypassMergeSortShuffleWriter
如果是SerializedShuffleHandle, 则选择UnsafeShuffleWriter
如果是BaseShuffleHandle, 则选择SortShuffleWriter
ShuffleWriter只有两个方法,write和stop方法。使用者首先调用write方法,添加数据,完成排序,最后调用stop方法,返回MapStatus结果。下面依次介绍ShuffleWriter的三个子类。
Spark MapOutputTracker 原理
Spark的shuffle过程分为writer和reader两块。 writer负责生成中间数据,reader负责整合中间数据。而中间数据的元信息,则由MapOutputTracker负责管理。 它负责writer和reader的沟通。
shuffle writer会将中间数据保存到Block里面,然后将数据的位置发送给MapOutputTracker。
shuffle reader通过向 MapOutputTracker获取中间数据的位置之后,才能读取到数据。
参考引用:
https://zhmin.github.io/2019/01/26/spark-shuffle-writer/
spark 笔记2的更多相关文章
- spark笔记 环境配置
spark笔记 spark简介 saprk 有六个核心组件: SparkCore.SparkSQL.SparkStreaming.StructedStreaming.MLlib,Graphx Spar ...
- 大数据学习——spark笔记
变量的定义 val a: Int = 1 var b = 2 方法和函数 区别:函数可以作为参数传递给方法 方法: def test(arg: Int): Int=>Int ={ 方法体 } v ...
- spark 笔记 16: BlockManager
先看一下原理性的文章:http://jerryshao.me/architecture/2013/10/08/spark-storage-module-analysis/ ,http://jerrys ...
- spark 笔记 15: ShuffleManager,shuffle map两端的stage/task的桥梁
无论是Hadoop还是spark,shuffle操作都是决定其性能的重要因素.在不能减少shuffle的情况下,使用一个好的shuffle管理器也是优化性能的重要手段. ShuffleManager的 ...
- spark 笔记 14: spark中的delay scheduling实现
延迟调度算法的实现是在TaskSetManager类中的,它通过将task存放在四个不同级别的hash表里,当有可用的资源时,resourceOffer函数的参数之一(maxLocality)就是这些 ...
- spark 笔记 12: Executor,task最后的归宿
spark的Executor是执行task的容器.和java的executor概念类似. ===================start executor runs task============ ...
- spark 笔记 11: SchedulingAlgorithm 两种调度算法的优先级比较
调度算法的最基本工作之一,就是比较两个可执行的task的优先级.spark提供的FIFO和FAIR的优先级比较在SchedulingAlgorithm这个接口体现.) { ) { ) { ) { fa ...
- spark 笔记 10: TaskScheduler相关
任务调度器的接口类.应用程序可以定制自己的调度器来执行.当前spark只实现了一个任务调度器) )))))val createTime = System.currentTimeMillis()clas ...
- spark 笔记 8: Stage
Stage 是一组独立的任务,他们在一个job中执行相同的功能(function),功能的划分是以shuffle为边界的.DAG调度器以拓扑顺序执行同一个Stage中的task. /** * A st ...
- spark 笔记 9: Task/TaskContext
DAGScheduler最终创建了task set,并提交给了taskScheduler.那先得看看task是怎么定义和执行的. Task是execution执行的一个单元. Task: execut ...
随机推荐
- Arduboy基本操作(二)
Arduboy基本操作(二) 方向键控制物体移动 #include<Arduboy.h> Arduboy arduboy; int i,j; void setup() { arduboy. ...
- 对接接口时,组织参数json出现的问题
在进行对接第三方接口时,进行参数组装成json的过程中出现参数传递格式错误以及json格式化错误. 在拼接json时,如果json中有对象,则以map的方式组装好所有参数.最后map转成json,不然 ...
- Laravel ServiceProvider注册过程及简单使用
Laravel ServiceProvider注册过程及简单使用 还记得facade注册流程吗?回顾下 在bootstrap/app.php中返回$app实例后,通过singleton方法绑定了三个实 ...
- 万字长文,Python数据分析实战,使用Pandas进行数据分析
文章目录 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去学习更加高深的知识.那么针对这三类人,我给大家 ...
- Android开发之Eclipse与Android Studio的java类 作者版权模板
/** * 作者:${USER} on ${DATE} ${HOUR}:${MINUTE} * * 联系QQ:986945193 * * 微博:http://weibo.com/mcxiaobing ...
- Unity2018.4.7导出Xcode工程报错解决方案
1. unity导出xcode工程有两种模式,一种为模拟器运行的工程,一种为真机运行的工程,这里遇到的错误,都是导出模拟器运行工程时报的错误. 错误1: unity UnityMetalSupport ...
- Lua 调用的 C 函数保存 state 的两种方式: Storing State in C Functions 笔记
http://yanbin.is-programmer.com/posts/94214.html Registery的Key 1. 整数Key用于Lua的引用机制,所以不要使用整数作为Key 2. 通 ...
- 哈希,hash
Hash,一般翻译做散列.杂凑,或音译为哈希.----摘自百度百科 先来看个题:给你一坨一些键值集<key,value>,\(key\)的范围是\([1,10^{10}]\),每次询问\( ...
- 小程序开发-block组件的使用
微信小程序中,block不是一个组件,而是一个包装元素,不会在页面中做任何渲染. 使用情况:条件渲染 wx:if 因为 wx:if 是一个控制属性,需要将它添加到一个标签/组件上,用于控制隐藏与显示. ...
- 洛谷 P4072 [SDOI2016]征途 斜率优化DP
洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...