matplotlib学习日记(九)-图形样式
(一)刻度线定位器和刻度格式器的使用方法
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import AutoMinorLocator, MultipleLocator, FuncFormatter x = np.linspace(0.5, 3.5, 100)
y = np.sin(x) fig = plt.figure(figsize=(8, 8)) #生成8x8的画布
ax = fig.add_subplot(111) #向画布添加1行1列的子区,并且生成Axes实例ax ax.xaxis.set_major_locator(MultipleLocator(1.0))
'''ax.xaxis是ax的x轴实例,语句会在x轴的1倍处
分别设置主刻度线,其中参数MultipleLocator(1.0)
就是设置主刻度线的显示位置
'''
ax.yaxis.set_major_locator(MultipleLocator(1.0))
'''
次刻度线的显示位置,MultipleLocator(1.0)表示
将每一份主刻度线区间等分4份
'''
ax.xaxis.set_minor_locator(AutoMinorLocator(4)) ax.yaxis.set_minor_locator(AutoMinorLocator(4)) #函数是控制次要刻度线显示精度的
def minor_tick(x, pos):
if not x %1.0:
return ""
return "%.2f" % x ax.xaxis.set_minor_formatter(FuncFormatter(minor_tick))
#set_minor_formatter设置次刻度线精度,FuncFormatter(minor_tick)控制位置精度 ax.tick_params("y", which="major", length = 15, width=2.0, color="r")#刻度线样式的设置
ax.tick_params(which="manor", length = 5, width=1.0, labelsize=10, labelcolor="0.25") ax.set_xlim(0, 4)
ax.set_ylim(0, 2) ax.plot(x, y, c=(0.25, 0.25, 1.00), lw=2, zorder=10) ax.grid(linestyle="-", linewidth=0.5, color="r", zorder=0) plt.show()
(二)刻度标签和刻度线样式的定制化
import matplotlib.pyplot as plt
import numpy as np fig = plt.figure(facecolor=(1.0, 1.0, 0.9412))
ax = fig.add_axes([0.1, 0.4, 0.5, 0.5]) for ticklabel in ax.xaxis.get_ticklabels():
#ax.xaxis.get_ticklabels()是使用get_ticklabels()方法获得Text实例列表,用for循环遍历设置
ticklabel.set_color("slateblue")
ticklabel.set_fontsize(18)
ticklabel.set_rotation(30) for tickline in ax.yaxis.get_ticklines():
tickline.set_color("lightgreen")
tickline.set_markersize(20)
tickline.set_markeredgewidth(2)
plt.show()
(三)货币和时间序列样式的刻度标签
import matplotlib.pyplot as plt
import numpy as np
from calendar import month_name, day_name
#日期标签通过导入标准库calender中的day_name实现日期的刻度标签
from matplotlib.ticker import FormatStrFormatter
'''货币标签是通过FormatStrFormatter(r"$\yen%1.1f$")
作为参数值代入实例方法Axes.set_major_formmatter()中
实现格式化坐标轴标签,r"$\yen%1.1f$"是用来生成保留两位有效数字的人民币计量的刻度标签'''
fig = plt.figure()
ax = fig.add_axes([0.2, 0.2, 0.7, 0.7]) x = np.arange(1, 8, 1)
y = 2*x
ax.plot(x, y, ls="-", lw=2, color="orange", marker="o", ms=20, mfc="c",mec="c") ax.yaxis.set_major_formatter(FormatStrFormatter(r"$\yen%1.1f$")) plt.xticks(x, day_name[0:7], rotation =20) ax.set_xlim(0, 8)
ax.set_ylim(0, 18) plt.show()
(四)有指示注释与无指示注解(annotate)
import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0.5, 3.5, 100)
y = np.sin(x) fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(111) ax.plot(x, y, c="b", ls="--", lw=2) ax.annotate("maximum", xy=(np.pi/2, 1.0), xycoords="data",
xytext=((np.pi/2)+0.15, 0.8), textcoords="data",
weight="bold", color="r", arrowprops=dict(arrowstyle="->", connectionstyle="arc3",color="r"))
'''
有指示注释使用annotate函数,ax.annotate(str, xy, xycoords, xytext, textcoords, weight, color, arrowprops)
s------>注释内容
xy------>被解释内容的位置
xycoords------>xy的坐标系统,参数值“data”表示与折线图使用相同坐标系统
xytext-------->注释内容所在位置,如果是矩形,左下角所在位置
textcoords----->xytext的坐标系统
weight--------->注释内容的显示风格
color--------->注释内容的颜色
arrowprops---->指示箭头的属性,箭头风格,颜色等等
'''
ax.text(2.8, 0.4, "$y=\sin(x)$", fontsize=20, color="b",
bbox=dict(facecolor="y", alpha=.5))
#无指示注释
plt.show()
(五)圆角文本框的设置
import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0.0, 10, 40)
y = np.random.randn(40) plt.plot(x, y, ls="-", lw=2, marker="o", ms=20, mfc="orange", alpha=.6) plt.grid(ls=":", color="gray", alpha=.5) plt.text(6, 0, "Matplotlib", size=30, rotation=30,
bbox=dict(boxstyle="round", ec="#8968CD", fc="#FFE1FF"))
#boxstyle="round"控制着圆角,还可改成square,circle等
plt.show()
(六)文本的水印效果
import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0.0, 10, 40)
y = np.random.randn(40) plt.plot(x, y, ls="-", lw=2, marker="o", ms=20, mfc="orange", alpha=.6) plt.grid(ls=":", color="gray", alpha=.5) plt.text(1, 2, "Matplotlib", fontsize=50, color="gray",alpha=.5)
#水印通过alpha控制
plt.show
(七)圆角线框的有弧度指示注解
import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0, 10, 2000)
y = np.sin(x)*np.cos(x) fig = plt.figure()
ax = fig.add_subplot(111) ax.plot(x, y, ls="-", lw=2) bbox = dict(boxstyle="round", fc="#7EC0EE", ec="#9B30FF")
arrowprops = dict(arrowstyle="-|>", connectionstyle="angle, angleA=0, angleB=45, rad=10", color="r")
#connectionstyle控制着箭头的走向
ax.annotate("single point", (5, np.sin(5)*np.cos(5)), xytext=(3, np.sin(3)*np.cos(3)),
fontsize=12, color = "r", bbox=bbox, arrowprops=arrowprops)
ax.grid(ls=":", color="gray", alpha=.5) plt.show()
(八)有箭头指示的趋势线
import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0, 10, 2000)
y = np.sin(x) fig = plt.figure()
ax = fig.add_subplot(111) ax.plot(x, y, ls="-", lw=2)
ax.set_ylim(-1.5, 1.5) arrowprops = dict(arrowstyle="-|>", color="r")
#connectionstyle控制着箭头的走向
ax.annotate("", (3*np.pi/2, np.sin(3*np.pi/2)+0.5), xytext=(np.pi/2, np.sin(np.pi/2)+0.5),
color = "r", arrowprops=arrowprops)
ax.arrow(0.0, -0.4, np.pi/2, 1.2, head_width=0.05, head_length=0.1,
fc="g", ec="g")
#arrow(起点,xy增量,样式)
ax.grid(ls=":", color="gray", alpha=.5) plt.show()
matplotlib学习日记(九)-图形样式的更多相关文章
- matplotlib学习日记(四)-绘制直方统计图形
(一)柱状图-应用在定性数据的可视化场景或者离散型数据,条形图和柱状图相似,只不过是函数barh import matplotlib as mpl import matplotlib.pyplot a ...
- matplotlib学习日记(三)------简单统计图
(一)函数bar()---------绘制柱状图 import matplotlib as mpl import matplotlib.pyplot as plt mpl.rcParams[" ...
- matplotlib学习日记(一)------图表组成元素
1.使用函数绘制matplotlib的图表组成元素 (1)函数plot---变量的变化趋势 import matplotlib.pyplot as plt import numpy as np x ...
- matplotlib学习日记(十)-划分画布的主要函数
(1)函数subplot()绘制网格区域中的几何形状相同的子区布局 import matplotlib.pyplot as plt import numpy as np '''函数subplot的介绍 ...
- matplotlib学习日记(十)-共享绘图区域的坐标轴
(1)共享单一绘图区域的坐标轴 ''' 上一讲介绍了画布的划分,有时候想将多张图放在同一个绘图区域, 不想在每个绘图区域只绘制一幅图形,这时候借助共享坐标轴的方法实现在一个绘图区 绘制多幅图形的目的. ...
- matplotlib学习日记(七)---误差棒图
(一)误差棒图----误差置信区间的表示 import matplotlib.pyplot as plt import numpy as np x = np.linspace(0.1, 0.6, 10 ...
- matplotlib学习日记(二)----图表组成练习
''' 将前面的知识进行练习 plot,scatter,legend等 ''' import matplotlib.pyplot as plt import numpy as np from matp ...
- matplotlib学习日记(十一)---坐标轴高阶应用
(一)设置坐标轴的位置和展示形式 (1)向画布中任意位置添加任意数量的坐标轴 ''' 通过在画布的任意位置和区域,讲解设置坐标轴的位置和坐标轴的展示形式的实现方法, 与subplot,subplots ...
- matplotlib学习日记(八)----完善统计图
(一)再说legend() import matplotlib.pyplot as plt import numpy as np x = np.arange(0, 2.1, 0.1) y = np.p ...
随机推荐
- C语言讲义——errno
#define EPERM 1 /* Operation not permitted */ #define ENOENT 2 /* No such file or directory */ #defi ...
- JQuery案例:购物车加减
购物车加减 <head> <meta charset="UTF-8"> <title>加减购物车</title> <style ...
- asp.net core 集成 Prometheus
asp.net core 集成 prometheus Intro Prometheus 是一个开源的现代化,云原生的系统监控框架,并且可以轻松的集成 PushGateway, AlertManager ...
- Linux初学学习笔记 -----正则表达式和通配符
简单来说通配符是用来匹配文件名和目录而正则表达式是用来匹配文本内容的 常用的通配符 *:匹配任意多个字符 下面的是以p为开头的目录里面的文件 ?:匹配任意一个字符 [-]:匹配括号内出现的任意一个字符 ...
- 使用RestTemplate,显示请求信息,响应信息
使用RestTemplate,显示请求信息,响应信息 这里不讲怎么用RestTemplate具体细节用法,就是一个学习中的过程记录 一个简单的例子 public class App { public ...
- MiniProfiler性能监控分析工具在.NET项目中的使用
MiniProfiler是一款针对.NET, Ruby, Go and Node.js的性能分析的轻量级程序.可以对一个页面本身,及该页面通过直接引用.Ajax.Iframe形式访问的其它页面进行监控 ...
- SAP调用RestfulApi接口POST数据到外部系统
作者:明光烁亮 出处:http://www.cnblogs.com/hezhongxun/ 微信号:HEme922 欢迎加好友一起交流SAP! 视频资料共享. 本文版权归作者和博客园共有,欢迎转载,但 ...
- 阻止brew自动更新
export HOMEBREW_NO_AUTO_UPDATE=true
- 第15.46节、PyQt显示部件:OpenGL Widget部件功能简介及使用案例
专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt入门学习 老猿Python博文目录 老猿学5G博文目录 一.概述 OpenGL Widget部件是一个Op ...
- PyQt(Python+Qt)学习随笔:QScrollArea为什么不起作用未出现滚动条?
老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 老猿在进行Scroll Area部件测试时,在下面的窗体中放置了一个Scroll Area部件,在部 ...