Tutte theorem

图 \(G=(V,E)\) 有完美匹配当且仅当满足 \(\forall U\subseteq V,o(G-U)\le|U|,o(X)\) 表示 X 子图的奇连通块数。

Tutte–Berge formula

图 \(G=(V,E)\) 的最大匹配数为 \(\frac12\min\limits_{U\subseteq V}\{|U|-o(V-U)+|V|\}\)

Tutte 定理证明

必要性

如果 G 有完美匹配,那么每个奇连通块至少有一个点需要与 U 中的点匹配,故得证.

充分性

定义坏集 S 满足 \(|S|<o(G-S)\) ,那么图 G 中不能存在坏集。

如果 S 是 G 的坏集,那么 S 也一定是 G 的导出子图的坏集。

于是不妨令 G 满足 G 不存在完美匹配,且加入任意一条不在 G 中的边后存在完美匹配。

令 S 为满足度数为 \(|V|-1\) 的点集,首先考虑 \(G-S\) 中的每个连通块都是团的情况,容易发现 S 一定是坏集。

于是 \(G-S\) 中至少有一个连通块不是团,考虑把这个连通块扯出来讨论,我们找出其中两个没有边直接相连的点 \(x,y\) ,设从 \(x\rightarrow y\) 最短路上的头三个点为 \(a,b,c\) ,那么显然 \((a,c)\notin E\) ,且一定存在点 \(d\) 满足 \((b,d)\notin E\) 。

由于上面限制了 G 加入任意一条不在 G 中的边后都存在完美匹配,因此我们设 \(M_1\) 是 \((V,E\cup(a,c))\) 的一组完美匹配, \(M_2\) 是 \((V,E\cup(b,d))\) 的一组完美匹配,显然 \((a,c)\in M_1,(M_2)\in M_2\) (第一次走 \(M_1\) 的)。

然后定义 P 是在 G 上面从 d 出发,交替走 \(M_1,M_2\) 中的边得到的最长路径,显然最后会落在 \(a,b,c\) 点中的一个。

如果落在 b 点,我们令 \(C=P\cup(b,d)\) ,否则令 \(C=P\cup(a/c,b)\cup(b,d)\) ,这样 C 就是一个偶环,对于 C 我们选择不在 \(M_2\) 中的边可以形成一组新的匹配,对于 \(G-C\) 中的点我们按照 \(M_2\) 中的边匹配,这样就形成了一组新的完美匹配,故得证.

Tutte-Berge 公式与 Tutte 定理等价性证明

定义 \(def(G)\) 表示图 G 最大匹配中未被覆盖定点数, \(\nu(G)\) 表示 G 的最大匹配数,那么显然有 \(def(G)=|V|-2\nu(G)\).

Tutte-Berge formula \(\Rightarrow\) Tutte theorem

移项即可

Tutte theorem \(\Rightarrow\) Tutte-Berge formula

设 \(\delta'(G)=\max\limits_{U\subseteq V}\{o(V-U)-|U|\}\) ,并设 \(S\) 是取得最大值时的 \(U\) ,即证 \(\delta'(G)=def(G)\)。

显然有 \(\delta'(G)\ge0\) ,下面根据 \(\delta'(G)\) 的取值进行分类讨论。

  1. \(\delta'(G)=0\) ,那么满足 Tutte 定理的条件,整张图存在完美匹配, \(\delta'(G)=def(G)=0\)
  2. \(\delta'(G)>0\) ,那么一定有若干奇连通块存在点在 X 中未被覆盖,设该个数为 \(x\) ,\(o(G-X)=y\) ,那么一定满足 \(x\ge y-|X|\) 和 \(x\le def(G)\) ,因此 \(\delta'(G)\le def(G)\)成立。

    另一方面,考虑构造一个有 \(\delta'(G)=0\) 个点的完全图 H ,然后跟 G 拼一个新图 \(G'=(V_H\cup V_G,E_H\cup E_G\cup\{(u,v)|u\in V_H,v\in V_G\})\)

    容易在利用 Tutte 定理简单讨论后证明 G' 有完美匹配,因此 \(|V_H|=\delta'(G)\ge def(G)\) ,因此 \(\delta'(G)=def(G)\) ,故 Tutte-Berge 公式得证.

Tutte 定理与 Tutte–Berge 公式的更多相关文章

  1. zhengrui集训D1-D5笔记

    Day_1 计数 它咕掉了 Day_1 序列数据结构 它咕掉了 Day_2 线性代数 高斯消元\Large{高斯消元}高斯消元 普通版:略 模质数:求逆 模合数:exgcd 逆矩阵\Large{逆矩阵 ...

  2. hdu2255 二分图最大权配KM

    KM算法:hdu2255 (大概理解了 参考博客: http://blog.csdn.net/niushuai666/article/details/7171880)         所谓交错树:就是 ...

  3. Kuhn-Munkres算法 (剪辑)(备用)

    KM算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的. 设顶点Xi的顶标为A[i],顶点Yi的顶标为B[i],顶点Xi与Yj之间的边权为w[i,j]. 在算法执行 ...

  4. 从拟阵基础到 Shannon 开关游戏

    从拟阵基础到 Shannon 开关游戏 本文中的定理名称翻译都有可能不准确!如果有找到错误的同学一定要联系我! 本文长期征集比较好的例题,如果有比较典型的题可以联系我 目录 从拟阵基础到 Shanno ...

  5. R Language

    向量定义:x1 = c(1,2,3); x2 = c(1:100) 类型显示:mode(x1) 向量长度:length(x2) 向量元素显示:x1[c(1,2,3)] 多维向量:multi-dimen ...

  6. ACM/ICPC竞赛

    ACM知识点分类   第一类:基础算法 (1) 基础算法:枚举,贪心,递归,分治,递推,构造,模拟 (2) 动态规划:背包问题,树形dp,状态压缩dp,单调性优化,插头dp (3) 搜索:dfs,bf ...

  7. 【bzoj1041】圆上的整点

    题意 给定一个圆\(x^2+y^2=z^2\),求圆周上有多少个点的坐标是整数. \(r\leq 2*10^9\) 分析 这道题目关键要知道一些勾股数的性质,剩下的就很好处理了. 勾股数的性质 参考: ...

  8. POJ 2154 【POLYA】【欧拉】

    前记: TM终于决定以后干啥了.这几天睡的有点多.困饿交加之间喝了好多水.可能是灌脑了. 切记两件事: 1.安心当单身狗 2.顺心码代码 题意: 给你N种颜色的珠子,串一串长度问N的项链,要求旋转之后 ...

  9. 《程序设计中的组合数学》——polya计数

    我们在高中的组合数学中常常会碰到有关涂色的问题,例如:用红蓝两种颜色给正方形的四个顶点涂色,会有几种不同的方案.在当时,我们下意识的认为,正方形的四个顶点是各不相同的,即正方形是固定的.而实际上我们知 ...

随机推荐

  1. Django之 Models组件

    本节内容 路由系统 models模型 admin views视图 template模板 引子 讲django的models之前, 先来想一想, 让你通过django操作数据库,你怎么做? 做苦思冥想, ...

  2. 【python大牛分享】python——接口自动化测试框架环境的使用

    本文总结分享介绍接口测试框架开发,环境使用python3+selenium3+unittest+ddt+requests测试框架及ddt数据驱动,采用Excel管理测试用例等集成测试数据功能,以及使用 ...

  3. Linux下diff工具

    目录 CentOS 7为例 Meld DiffMerge KDiff3 Kompare CentOS 7为例 Meld Installation 官网 $ sudo yum install meld; ...

  4. Ethical Hacking - Web Penetration Testing(4)

    CODE EXECUTION VULNS Allows an attacker to execute OS commands. Windows or Linux commands. Can be us ...

  5. JVM调优工具Arthas的使用

    Arthas 是Alibaba开源的Java诊断工具,深受开发者喜爱.在线排查问题,无需重启:动态跟踪Java代码:实时监控JVM状态. Arthas 支持JDK6+,支持Linux/Mac/Wind ...

  6. 肝了两天IntelliJ IDEA 2020,解锁11种新姿势, 真香!!!

    IDEA2020版本正式发布已经有3个月了,当时由于各方面原因(太懒)也没有去尝试新功能.于是这个周末特意去在另一个电脑上下载了最新版的IDEA,并尝试了一下.总的来说呢,体验上明显的提升. 作为一个 ...

  7. patelinux 安装

    参考文档:https://china.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug1144-petalinux-tools-r ...

  8. [jvm] -- 类文件结构篇

    类文件结构 结构图  魔数 头四个字节,作用是确定这个文件是否为一个能被虚拟机接收的 Class 文件. Class 文件版本 第五和第六是次版本号,第七和第八是主版本号. 高版本的 Java 虚拟机 ...

  9. 发布一个自己做的图片转Base64的软件,Markdown写文章时能用到

    markdownpic 介绍 Markdown编辑时图片生成base64 软件架构 使用了.netcore winform框架 安装教程 直接运行即可 使用说明 拖拽图片文件 双击选择文件 复制粘贴图 ...

  10. JS闭包应用场景之函数回调(含函数的调用个人理解)

    首先我们来绑定一个函数给click事件,这个很好理解,就是创建一个匿名函数作为回调绑定给click事件,如下: 但如果我们想声明一个函数作为回调来绑定多个元素呢,例如下面(注意:绑定事件后不用加括号, ...