写在前面

在互联网应用中,高并发系统会面临一个重大的挑战,那就是大量流高并发访问,比如:天猫的双十一、京东618、秒杀、抢购促销等,这些都是典型的大流量高并发场景。关于秒杀,小伙伴们可以参见我的另一篇文章《【高并发】高并发秒杀系统架构解密,不是所有的秒杀都是秒杀!

关于【冰河技术】微信公众号,解锁更多【高并发】专题文章。

注意:由于原文篇幅比较长,所以被拆分为:理论、算法、实战(HTTP接口实战+分布式限流实战)三大部分。

理论篇:《【高并发】如何实现亿级流量下的分布式限流?这些理论你必须掌握!!

算法篇:《【高并发】如何实现亿级流量下的分布式限流?这些算法你必须掌握!!

项目源码已提交到github:https://github.com/sunshinelyz/mykit-ratelimiter

HTTP接口限流实战

这里,我们实现Web接口限流,具体方式为:使用自定义注解封装基于令牌桶限流算法实现接口限流。

不使用注解实现接口限流

搭建项目

这里,我们使用SpringBoot项目来搭建Http接口限流项目,SpringBoot项目本质上还是一个Maven项目。所以,小伙伴们可以直接创建一个Maven项目,我这里的项目名称为mykit-ratelimiter-test。接下来,在pom.xml文件中添加如下依赖使项目构建为一个SpringBoot项目。

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.2.6.RELEASE</version>
</parent> <modelVersion>4.0.0</modelVersion>
<groupId>io.mykit.limiter</groupId>
<artifactId>mykit-ratelimiter-test</artifactId>
<version>1.0.0-SNAPSHOT</version>
<packaging>jar</packaging>
<name>mykit-ratelimiter-test</name> <properties>
<guava.version>28.2-jre</guava.version>
</properties> <dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<exclusions>
<exclusion>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-tomcat</artifactId>
</exclusion>
<exclusion>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-logging</artifactId>
</exclusion>
</exclusions>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-undertow</artifactId>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-configuration-processor</artifactId>
<optional>true</optional>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency> <dependency>
<groupId>org.aspectj</groupId>
<artifactId>aspectjweaver</artifactId>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-aop</artifactId>
</dependency> <dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>${guava.version}</version>
</dependency>
</dependencies> <build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.1</version><!--$NO-MVN-MAN-VER$-->
<configuration>
<source>${java.version}</source>
<target>${java.version}</target>
</configuration>
</plugin>
</plugins>
</build>

可以看到,我在项目中除了引用了SpringBoot相关的Jar包外,还引用了guava框架,版本为28.2-jre。

创建核心类

这里,我主要是模拟一个支付接口的限流场景。首先,我们定义一个PayService接口和MessageService接口。PayService接口主要用于模拟后续的支付业务,MessageService接口模拟发送消息。接口的定义分别如下所示。

  • PayService
package io.mykit.limiter.service;
import java.math.BigDecimal;
/**
* @author binghe
* @version 1.0.0
* @description 模拟支付
*/
public interface PayService {
int pay(BigDecimal price);
}
  • MessageService
package io.mykit.limiter.service;
/**
* @author binghe
* @version 1.0.0
* @description 模拟发送消息服务
*/
public interface MessageService {
boolean sendMessage(String message);
}

接下来,创建二者的实现类,分别如下。

  • MessageServiceImpl
package io.mykit.limiter.service.impl;
import io.mykit.limiter.service.MessageService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Service;
/**
* @author binghe
* @version 1.0.0
* @description 模拟实现发送消息
*/
@Service
public class MessageServiceImpl implements MessageService {
private final Logger logger = LoggerFactory.getLogger(MessageServiceImpl.class);
@Override
public boolean sendMessage(String message) {
logger.info("发送消息成功===>>" + message);
return true;
}
}
  • PayServiceImpl
package io.mykit.limiter.service.impl;
import io.mykit.limiter.service.PayService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Service;
import java.math.BigDecimal;
/**
* @author binghe
* @version 1.0.0
* @description 模拟支付
*/
@Service
public class PayServiceImpl implements PayService {
private final Logger logger = LoggerFactory.getLogger(PayServiceImpl.class);
@Override
public int pay(BigDecimal price) {
logger.info("支付成功===>>" + price);
return 1;
}
}

由于是模拟支付和发送消息,所以,我在具体实现的方法中打印出了相关的日志,并没有实现具体的业务逻辑。

接下来,就是创建我们的Controller类PayController,在PayController类的接口pay()方法中使用了限流,每秒钟向桶中放入2个令牌,并且客户端从桶中获取令牌,如果在500毫秒内没有获取到令牌的话,我们可以则直接走服务降级处理。

PayController的代码如下所示。

package io.mykit.limiter.controller;
import com.google.common.util.concurrent.RateLimiter;
import io.mykit.limiter.service.MessageService;
import io.mykit.limiter.service.PayService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.math.BigDecimal;
import java.util.concurrent.TimeUnit; /**
* @author binghe
* @version 1.0.0
* @description 测试接口限流
*/
@RestController
public class PayController {
private final Logger logger = LoggerFactory.getLogger(PayController.class);
/**
* RateLimiter的create()方法中传入一个参数,表示以固定的速率2r/s,即以每秒2个令牌的速率向桶中放入令牌
*/
private RateLimiter rateLimiter = RateLimiter.create(2); @Autowired
private MessageService messageService;
@Autowired
private PayService payService;
@RequestMapping("/boot/pay")
public String pay(){
//记录返回接口
String result = "";
//限流处理,客户端请求从桶中获取令牌,如果在500毫秒没有获取到令牌,则直接走服务降级处理
boolean tryAcquire = rateLimiter.tryAcquire(500, TimeUnit.MILLISECONDS);
if (!tryAcquire){
result = "请求过多,降级处理";
logger.info(result);
return result;
}
int ret = payService.pay(BigDecimal.valueOf(100.0));
if(ret > 0){
result = "支付成功";
return result;
}
result = "支付失败,再试一次吧...";
return result;
}
}

最后,我们来创建mykit-ratelimiter-test项目的核心启动类,如下所示。

package io.mykit.limiter;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication; /**
* @author binghe
* @version 1.0.0
* @description 项目启动类
*/
@SpringBootApplication
public class MykitLimiterApplication { public static void main(String[] args){
SpringApplication.run(MykitLimiterApplication.class, args);
}
}

至此,我们不使用注解方式实现限流的Web应用就基本完成了。

运行项目

项目创建完成后,我们来运行项目,运行SpringBoot项目比较简单,直接运行MykitLimiterApplication类的main()方法即可。

项目运行成功后,我们在浏览器地址栏输入链接:http://localhost:8080/boot/pay。页面会输出“支付成功”的字样,说明项目搭建成功了。如下所示。

此时,我只访问了一次,并没有触发限流。接下来,我们不停的刷浏览器,此时,浏览器会输出“支付失败,再试一次吧...”的字样,如下所示。

在PayController类中还有一个sendMessage()方法,模拟的是发送消息的接口,同样使用了限流操作,具体代码如下所示。

@RequestMapping("/boot/send/message")
public String sendMessage(){
//记录返回接口
String result = "";
//限流处理,客户端请求从桶中获取令牌,如果在500毫秒没有获取到令牌,则直接走服务降级处理
boolean tryAcquire = rateLimiter.tryAcquire(500, TimeUnit.MILLISECONDS);
if (!tryAcquire){
result = "请求过多,降级处理";
logger.info(result);
return result;
}
boolean flag = messageService.sendMessage("恭喜您成长值+1");
if (flag){
result = "消息发送成功";
return result;
}
result = "消息发送失败,再试一次吧...";
return result;
}

sendMessage()方法的代码逻辑和运行效果与pay()方法相同,我就不再浏览器访问 http://localhost:8080/boot/send/message 地址的访问效果了,小伙伴们可以自行验证。

不使用注解实现限流缺点

通过对项目的编写,我们可以发现,当在项目中对接口进行限流时,不使用注解进行开发,会导致代码出现大量冗余,每个方法中几乎都要写一段相同的限流逻辑,代码十分冗余。

如何解决代码冗余的问题呢?我们可以使用自定义注解进行实现。

使用注解实现接口限流

使用自定义注解,我们可以将一些通用的业务逻辑封装到注解的切面中,在需要添加注解业务逻辑的方法上加上相应的注解即可。针对我们这个限流的实例来说,可以基于自定义注解实现。

实现自定义注解

实现,我们来创建一个自定义注解,如下所示。

package io.mykit.limiter.annotation;
import java.lang.annotation.*;
/**
* @author binghe
* @version 1.0.0
* @description 实现限流的自定义注解
*/
@Target(value = ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface MyRateLimiter {
//向令牌桶放入令牌的速率
double rate();
//从令牌桶获取令牌的超时时间
long timeout() default 0;
}

自定义注解切面实现

接下来,我们还要实现一个切面类MyRateLimiterAspect,如下所示。

package io.mykit.limiter.aspect;

import com.google.common.util.concurrent.RateLimiter;
import io.mykit.limiter.annotation.MyRateLimiter;
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;
import org.aspectj.lang.reflect.MethodSignature;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component; import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.concurrent.TimeUnit; /**
* @author binghe
* @version 1.0.0
* @description 一般限流切面类
*/
@Aspect
@Component
public class MyRateLimiterAspect { private RateLimiter rateLimiter = RateLimiter.create(2); @Pointcut("execution(public * io.mykit.limiter.controller.*.*(..))")
public void pointcut(){ } /**
* 核心切面方法
*/
@Around("pointcut()")
public Object process(ProceedingJoinPoint proceedingJoinPoint) throws Throwable{
MethodSignature signature = (MethodSignature) proceedingJoinPoint.getSignature(); //使用反射获取方法上是否存在@MyRateLimiter注解
MyRateLimiter myRateLimiter = signature.getMethod().getDeclaredAnnotation(MyRateLimiter.class);
if(myRateLimiter == null){
//程序正常执行,执行目标方法
return proceedingJoinPoint.proceed();
}
//获取注解上的参数
//获取配置的速率
double rate = myRateLimiter.rate();
//获取客户端等待令牌的时间
long timeout = myRateLimiter.timeout(); //设置限流速率
rateLimiter.setRate(rate); //判断客户端获取令牌是否超时
boolean tryAcquire = rateLimiter.tryAcquire(timeout, TimeUnit.MILLISECONDS);
if(!tryAcquire){
//服务降级
fullback();
return null;
}
//获取到令牌,直接执行
return proceedingJoinPoint.proceed(); } /**
* 降级处理
*/
private void fullback() {
response.setHeader("Content-type", "text/html;charset=UTF-8");
PrintWriter writer = null;
try {
writer = response.getWriter();
writer.println("出错了,重试一次试试?");
writer.flush();;
} catch (IOException e) {
e.printStackTrace();
}finally {
if(writer != null){
writer.close();
}
}
}
}

自定义切面的功能比较简单,我就不细说了,大家有啥问题可以关注【冰河技术】微信公众号来进行提问。

接下来,我们改造下PayController类中的sendMessage()方法,修改后的方法片段代码如下所示。

@MyRateLimiter(rate = 1.0, timeout = 500)
@RequestMapping("/boot/send/message")
public String sendMessage(){
//记录返回接口
String result = "";
boolean flag = messageService.sendMessage("恭喜您成长值+1");
if (flag){
result = "消息发送成功";
return result;
}
result = "消息发送失败,再试一次吧...";
return result;
}

运行部署项目

部署项目比较简单,只需要运行MykitLimiterApplication类下的main()方法即可。这里,为了简单,我们还是从浏览器中直接输入链接地址来进行访问

效果如下所示。

接下来,我们不断的刷新浏览器。会出现“消息发送失败,再试一次吧..”的字样,说明已经触发限流操作。

基于限流算法实现限流的缺点

上面介绍的限流方式都只能用于单机部署的环境中,如果将应用部署到多台服务器进行分布式、集群,则上面限流的方式就不适用了,此时,我们需要使用分布式限流。至于在分布式场景下,如何实现限流操作,我们就在下一篇中进行介绍。

重磅福利

关注「 冰河技术 」微信公众号,后台回复 “设计模式” 关键字领取《深入浅出Java 23种设计模式》PDF文档。回复“Java8”关键字领取《Java8新特性教程》PDF文档。两本PDF均是由冰河原创并整理的超硬核教程,面试必备!!

好了,今天就聊到这儿吧!别忘了点个赞,给个在看和转发,让更多的人看到,一起学习,一起进步!!

写在最后

如果你觉得冰河写的还不错,请微信搜索并关注「 冰河技术 」微信公众号,跟冰河学习高并发、分布式、微服务、大数据、互联网和云原生技术,「 冰河技术 」微信公众号更新了大量技术专题,每一篇技术文章干货满满!不少读者已经通过阅读「 冰河技术 」微信公众号文章,吊打面试官,成功跳槽到大厂;也有不少读者实现了技术上的飞跃,成为公司的技术骨干!如果你也想像他们一样提升自己的能力,实现技术能力的飞跃,进大厂,升职加薪,那就关注「 冰河技术 」微信公众号吧,每天更新超硬核技术干货,让你对如何提升技术能力不再迷茫!

【高并发】亿级流量场景下如何为HTTP接口限流?看完我懂了!!的更多相关文章

  1. 亿级流量场景下,大型架构设计实现【2】---storm篇

    承接之前的博:亿级流量场景下,大型缓存架构设计实现 续写本博客: ****************** start: 接下来,我们是要讲解商品详情页缓存架构,缓存预热和解决方案,缓存预热可能导致整个系 ...

  2. 亿级流量场景下,大型缓存架构设计实现【1】---redis篇

    *****************开篇介绍**************** -------------------------------------------------------------- ...

  3. 亿级流量场景下,大型架构设计实现【全文检索高级搜索---ElasticSearch篇】-- 中

    1.Elasticsearch的基础分布式架构: 1.Elasticsearch对复杂分布式机制的透明隐藏特性2.Elasticsearch的垂直扩容与水平扩容3.增减或减少节点时的数据rebalan ...

  4. 【高并发】面试官问我如何使用Nginx实现限流,我如此回答轻松拿到了Offer!

    写在前面 最近,有不少读者说看了我的文章后,学到了很多知识,其实我本人听到后是非常开心的,自己写的东西能够为大家带来帮助,确实是一件值得高兴的事情.最近,也有不少小伙伴,看了我的文章后,顺利拿到了大厂 ...

  5. 【高并发】高并发环境下如何防止Tomcat内存溢出?看完我懂了!!

    写在前面 随着系统并发量越来越高,Tomcat所占用的内存就会越来越大,如果对Tomcat的内存管理不当,则可能会引发Tomcat内存溢出的问题,那么,如何防止Tomcat内存溢出呢?我们今天就来一起 ...

  6. 使用google的guova开发高并发下的接口限流

    使用google的guova开发高并发下的接口限流 使用google的guova进行限流 1.guova的限流方式,在定时产生定量的令牌,令牌的数量限制了流量 2.增加一个订单接口限流类OrderRa ...

  7. java亿级流量电商详情页系统的大型高并发与高可用缓存架构实战视频教程

    亿级流量电商详情页系统的大型高并发与高可用缓存架构实战 完整高清含源码,需要课程的联系QQ:2608609000 1[免费观看]课程介绍以及高并发高可用复杂系统中的缓存架构有哪些东西2[免费观看]基于 ...

  8. Netty Redis 亿级流量 高并发 实战 (长文 修正版)

    目录 疯狂创客圈 Java 分布式聊天室[ 亿级流量]实战系列之 -30[ 博客园 总入口 ] 写在前面 1.1. 快速的能力提升,巨大的应用价值 1.1.1. 飞速提升能力,并且满足实际开发要求 1 ...

  9. Netty 100万级到亿级流量 高并发 仿微信 IM后台 开源项目实战

    目录 写在前面 亿级流量IM的应用场景 十万级 单体IM 系统 高并发分布式IM系统架构 疯狂创客圈 Java 分布式聊天室[ 亿级流量]实战系列之 -10[ 博客园 总入口 ] 写在前面 ​ 大家好 ...

随机推荐

  1. js实现简单的菜谱全选功能

    思路:全选按钮和子按钮分开考虑,当全选按钮选中的时候,也就是其checked为true的时候,所有的子按钮也全都为true,反之,则为false.子按钮的想法是,当点击某一个子按钮的时候,会看一下是否 ...

  2. Idea自带插件Groovy无法创建和启动

    前言 如果现在有人要开始完全重写 Java,那么 Groovy 就像是 Java 2.0.Groovy 并没有取代 Java,而是作为 Java 的补充,它提供了更简单.更灵活的语法,可以在运行时动态 ...

  3. 我终于弄懂了Python的装饰器(二)

    此系列文档: 1. 我终于弄懂了Python的装饰器(一) 2. 我终于弄懂了Python的装饰器(二) 3. 我终于弄懂了Python的装饰器(三) 4. 我终于弄懂了Python的装饰器(四) 二 ...

  4. QQ群消息监听并将消息存储到SQLite数据库中

    目录 一.前言 二.效果图 1.插件界面 2.SQLite数据库 3.QQ群消息 三.准备工作 1.CQA软件 2.CQA-SDK易语言版本 3.易语言破解版 4.使用到的相关模块 四.开始撸代码 五 ...

  5. input函数报错"*** is not defined"

    #键盘输入输出name = input('input your name: ') print("姓名:"+name) 运行结果: 只需要在输入时加引号,如"yu" ...

  6. java8的parallelStream提升数倍查询效率

    业务场景 在很多项目中,都有类似数据汇总的业务场景,查询今日注册会员数,在线会员数,订单总金额,支出总金额等...这些业务通常都不是存在同一张表中,我们需要依次查询出来然后封装成所需要的对象返回给前端 ...

  7. flask 源码专题(八):路由加载

    1.示例代码 from flask import Flask app = Flask(__name__,static_url_path='/xx') @app.route('/index') def ...

  8. tensorboard学习笔记

    TensorBoard 默认是不会记录每个节点的用时.耗费的内存大小等这些信息的,那么如何才能在图上显示这些信息呢?关键就是如下这些代码,主要就是在 sess.run() 中加入 options 和  ...

  9. Active Directory - Creating Public and Personnel Share Folders via Script

    Create and save the following scripts on the DC folder \\Winsever2019\sysvol\pandabusiness.local\scr ...

  10. T4 分配时间 题解

    问题描述 小王参加的考试是几门科目的试卷放在一起考,一共给 t 分钟来做.他现在已经知道每 门科目花的时间和得到的分数的关系,还有写名字要的时间(他写自己的名字很慢)请帮他 算一下他最高能得几分.总分 ...