题目

Z 国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英。他们劫富济贫,惩恶扬善,受到社会各界的赞扬。

最近发生了一件可怕的事情,邪恶的 Y 国发动了一场针对 Z 国的侵略战争。战火绵延五百里,在和平环境中安逸了数百年的 Z 国又怎能抵挡的住 Y 国的军队。于是人们把所有的希望都寄托在了骑士团的身上,就像期待有一个真龙天子的降生,带领正义打败邪恶。

骑士团是肯定具有打败邪恶势力的能力的,但是骑士们互相之间往往有一些矛盾。每个骑士都有且仅有一个自己最厌恶的骑士(当然不是他自己),他是绝对不会与自己最厌恶的人一同出征的。

战火绵延,人民生灵涂炭,组织起一个骑士军团加入战斗刻不容缓!国王交给了你一个艰巨的任务,从所有的骑士中选出一个骑士军团,使得军团内没有矛盾的两人(不存在一个骑士与他最痛恨的人一同被选入骑士军团的情况),并且,使得这支骑士军团最具有战斗力。

为了描述战斗力,我们将骑士按照 \(1\) 至 \(n\) 编号,给每名骑士一个战斗力的估计,一个军团的战斗力为所有骑士的战斗力总和。

输入格式

第一行包含一个整数 \(n\),描述骑士团的人数。

接下来 \(n\) 行,每行两个整数,按顺序描述每一名骑士的战斗力和他最痛恨的骑士。

输出格式

应输出一行,包含一个整数,表示你所选出的骑士军团的战斗力。

输入样例

3
10 2
20 3
30 1

输出样例

30

题解

把每个骑士连接起来,形成一个图,如果A恨B,A不能和B在一起,B自然也就无法和A在一起,即使B不恨A,所以建图的时候建双向边.

然后就是树形DP

定义\(f[i][j]\),\(f[i][0]\)表示以点\(i\)为根的子树中,不选择根时的最大战斗力,\(f[i][1]\)表示以点\(i\)为根的子树中,选择根时的最大战斗力.

设\(u\)为树根,\(v\)为\(u\)的每个儿子,\(a[i]\)表示点\(i\)的战斗力

显然,

\(f[u][1]=\Sigma f[v][0]+a[u]\)

\(f[u][0]=\Sigma f[v][1]\)

但是,注意本题可能出现环,并且最多只能出现一个环

这时候随便从中间拆开,变成一条链,端点设为\(r1,r2\),然后以\(r1\)为根进行一次树形DP,不选\(r1\)(因为\(r,r2\)不能同时选),得到的值是\(f[r1][0]\);然后相同操作,对\(r2\)也进行一次,得到的值记为\(f[r2][0]\),然后把每一次树形DP的值的和就是答案.

代码

#include <bits/stdc++.h>
using namespace std;
const int N = 1000000 + 10;
int head[N], cnt = 1, size[N], r1, r2,p[N];
struct Edge { int to, next; } edges[2 * N];
bool vis[N], flag;
long long ans, f[N][2];
void add(int x, int y) {
edges[++cnt].next = head[x];
edges[cnt].to = y;
head[x] = cnt;
}
void dfs(int x, int fa) {
vis[x] = 1;
size[++size[0]] = x;
for (int i = head[x]; i; i = edges[i].next) {
int v = edges[i].to;
if (v == fa) continue;
if (!vis[v]) dfs(v, x);
else if (vis[v] && !flag) {
flag = true;
r1 = x, r2 = v;
}
}
}
void dfs2(int x, int fa) {
f[x][0] = 0;
f[x][1] = p[x];
for (int i = head[x]; i; i = edges[i].next) {
int v = edges[i].to;
if (v && v != fa) {
dfs2(v, x);
f[x][1] += f[v][0];
f[x][0] += max(f[v][0], f[v][1]);
}
}
}
void solve() {
if (!flag) {
int root = size[1];
dfs2(root, -1);
ans += max(f[root][0], f[root][1]);
} else {
long long maxv = -100;
for (int i = head[r1]; i; i = edges[i].next) {
if (edges[i].to == r2) {
edges[i].to = 0;
edges[i ^ 1].to = 0;
break;
}
}
dfs2(r1, -1);
maxv = max(maxv, f[r1][0]);
dfs2(r2, -1);
maxv = max(maxv, f[r2][0]);
ans += maxv;
}
}
int n;
int main() {
scanf("%d", &n);
int x, y;
for (int i = 1; i <= n; i++) scanf("%d%d", &p[i], &x), add(i, x), add(x, i);
for (int i = 1; i <= n; i++) {
if (!vis[i]) {
size[0] = 0;
flag = false;
dfs(i, -1);
solve();
}
}
printf("%lld", ans);
return 0;
}

P2607[ZJOI2008] 骑士 题解的更多相关文章

  1. 「树形DP」洛谷P2607 [ZJOI2008]骑士

    P2607 [ZJOI2008]骑士 题面: 题目描述 Z 国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的 ...

  2. 洛谷 P2607 [ZJOI2008]骑士 解题报告

    P2607 [ZJOI2008]骑士 题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的Y国发动了一 ...

  3. 洛谷P2607 [ZJOI2008]骑士

    P2607 [ZJOI2008]骑士 题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的Y国发动了一 ...

  4. P2607 [ZJOI2008]骑士 基环树,树dp;

    P2607 [ZJOI2008]骑士 本题本质上就是树dp,和没有上司的舞会差不多,只不过多了一个对基环树的处理. #include<iostream> #include<cstri ...

  5. Bzoj 1040 [ZJOI2008]骑士 题解

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5368  Solved: 2044[Submit][Status ...

  6. P2607 [ZJOI2008]骑士

    题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里, ...

  7. 洛谷P2607 [ZJOI2008]骑士(树形dp)

    题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里, ...

  8. 洛谷 P2607 [ZJOI2008]骑士 树形DP

    题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各 界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里, ...

  9. luogu P2607 [ZJOI2008]骑士 tarjan dp

    LINK:骑士 本来是不打算写的 发现这道题在tarjan的时候有一个坑点 所以写出来记录一下. 可以发现图可能是不连通的 且一个连通块中是一个奇环树. 做法:类似tarjan找割点 然后把环给拉出来 ...

随机推荐

  1. Python——day3

    看到右边的时钟了吗?  我想世界最公平的一件事就是每个人的每一小时.每一天.每一年都是相同的,每个人的时间都是一样的. 一直保持温热感是一件很了不起的事,加油,屏幕前的你和我. 明天,还在等你 回顾d ...

  2. 一、kafka 介绍 && kafka-client

    一.kafka 介绍 1.1.kafka 介绍 Kafka 是一个分布式消息引擎与流处理平台,经常用做企业的消息总线.实时数据管道,有的还把它当做存储系统来使用. 早期 Kafka 的定位是一个高吞吐 ...

  3. 温故知新-多线程-深入刨析park、unpark

    文章目录 摘要 park.unpark 看一下hotspot实现 参考 你的鼓励也是我创作的动力 Posted by 微博@Yangsc_o 原创文章,版权声明:自由转载-非商用-非衍生-保持署名 | ...

  4. 启动centos 不带桌面

    方法一:非systemd系统 #runlevel N 5 //表示运行级别为5 #init 3 //将运行级别设为3,此时桌面服务关闭 运行级别说明: 3 多用户模式.允许多用户登录系统,是系统默认的 ...

  5. [51nod1577]异或凑数

    题目   点这里看题目. 分析   以下设\(k=\lfloor\log_2(\max a)\rfloor\).   关于异或凑数的问题自然可以用线性基处理,即如果可以插入到线性基,就说明无法凑出这个 ...

  6. 【loj - 3056】 「HNOI2019」多边形

    目录 description solution accepted code details description 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时 ...

  7. maven项目快速搭建SSM框架(一)创建maven项目,SSM框架整合,Spring+Springmvc+Mybatis

    首先了解服务器开发的三层架构,分配相应的任务,这样就能明确目标,根据相应的需求去编写相应的操作. 服务器开发,大致分为三层,分别是: 表现层 业务层 持久层 我们用到的框架分别是Spring+Spri ...

  8. Linux下自己和自己用各种方法进行文件的上传下载

    环境: Ubuntu 16.04 1.SCP # 上传 scp /home/sea/Desktop/test.sh sea@192.168.1.31:/home/sea/Desktop/test.sh ...

  9. .Net Core微服务入门全纪录(四)——Ocelot-API网关(上)

    前言 上一篇[.Net Core微服务入门全纪录(三)--Consul-服务注册与发现(下)]已经使用Consul完成了服务的注册与发现,实际中光有服务注册与发现往往是不够的,我们需要一个统一的入口来 ...

  10. git 如何解决 (master|MERGING)

    git 如何解决 (master|MERGING) git reset --hard head //回退版本信息 git pull origin master