已知圆的坐标方程为:

X=R*SIN(θ)

Y=R*COS(θ)     (0≤θ≤2π)

将0~2π区间等分48段,即设定间隔dig的值为π/24。θ初始值从0开始,按曲线方程求得坐标值(x,y),并在当前坐标处绘制一个半径为r(相比R,r小得多)实心圆。之后每隔0.05秒,清除画布,将θ的初始值加π/24后,按曲线方程求得新坐标值(x,y),并在求得的新坐标处再绘制一个半径为r的实心圆,这样,可以得到半径为r的圆绕半径为R的圆形轨道动态旋转的动画效果。旋转一周后(即θ的值为2π),令θ重新从初值0开始继续动画过程。

编写如下的HTML代码。

<!DOCTYPE html>

<html>

<head>

<title>绕圆周旋转的小球</title>

</head>

<body>

<canvas id="myCanvas" width="500" height="400" style="border:3px double #996633;">

</canvas>

<script type="text/javascript">

var canvas = document.getElementById('myCanvas');

var ctx = canvas.getContext('2d');

var i=0;

setInterval(move,50);

function move()

{

ctx.clearRect(0,0,canvas.width,canvas.height);

var dig=Math.PI/24;

x0=250;

y0=200;

ctx.strokeStyle="green";

ctx.beginPath();

ctx.arc(x0,y0,100,0,Math.PI*2,true);

ctx.closePath();

ctx.stroke();

ctx.beginPath();

var x=100*Math.sin(i*dig)+x0;

var y=100*Math.cos(i*dig)+y0;

ctx.arc(x,y,5,0,Math.PI*2,true);

ctx.closePath();

ctx.fillStyle = "red";

ctx.fill();

i=i+1;

if (i>=48) i=0;

}

</script>

</body>

</html>

在浏览器中打开包含这段HTML代码的html文件,可以看到在浏览器窗口中呈现出如图1所示绕圆周旋转的小球。

图1  绕圆周旋转的小球

图1中圆周轨道只有一条,编写如下的HTML文件,通过二重循环绘制如图2所示的布满整个Canvas的多条圆周轨道。

<!DOCTYPE html>

<html>

<head>

<title>圆周轨道</title>

</head>

<body>

<canvas id="myCanvas" width="500" height="400" style="border:3px double #996633;">

</canvas>

<script type="text/javascript">

var canvas = document.getElementById('myCanvas');

var ctx = canvas.getContext('2d');

var dig=Math.PI/24;

for (k=0;k<=14;k++)

for (n=0;n<=17;n++)

{

x0=30*n;

y0=30*k;

ctx.beginPath();

ctx.strokeStyle="green";

ctx.arc(x0,y0,27,0,Math.PI*2,true);

ctx.closePath();

ctx.stroke();

}

</script>

</body>

</html>

图2  布满画布的多条圆周轨道

仿图1的程序,让每条轨道上都有一个小球在旋转。编写如下的HTML文件。

<!DOCTYPE html>

<html>

<head>

<title>动感小球</title>

</head>

<body>

<canvas id="myCanvas" width="500" height="400" style="border:3px double #996633;">

</canvas>

<script type="text/javascript">

var canvas = document.getElementById('myCanvas');

var ctx = canvas.getContext('2d');

var i=0;

setInterval(move,30);

function move()

{

ctx.clearRect(0,0,canvas.width,canvas.height);

var dig=Math.PI/24;

for (k=0;k<=14;k++)

for (n=0;n<=17;n++)

{

x0=30*n;

y0=30*k;

ctx.beginPath();

ctx.strokeStyle="green";

ctx.arc(x0,y0,27,0,Math.PI*2,true);

ctx.closePath();

ctx.stroke();

var x=27*Math.sin(i*dig)+x0;

var y=27*Math.cos(i*dig)+y0;

ctx.beginPath();

ctx.arc(x,y,3,0,Math.PI*2,true);

ctx.fillStyle = "black";

ctx.closePath();

ctx.fill();

}

i=i+1;

if (i>=48) i=0;

}

</script>

</body>

</html>

在浏览器中打开包含这段HTML代码的html文件,可以看到在浏览器窗口中呈现出如图3所示多个绕圆周旋转的小球。

图3  多个绕圆周旋转的小球

在图3中,所有小球旋转步调一致,整齐划一,缺少动感。如果为各个旋转的小球加上相位,并去掉轨道痕迹。修改HTML文件如下。

<!DOCTYPE html>

<html>

<head>

<title>动感小球</title>

</head>

<body>

<canvas id="myCanvas" width="500" height="400" style="border:3px double #996633;">

</canvas>

<script type="text/javascript">

var canvas = document.getElementById('myCanvas');

var ctx = canvas.getContext('2d');

var i=0;

setInterval(move,30);

function move()

{

ctx.clearRect(0,0,canvas.width,canvas.height);

var dig=Math.PI/24;

for (k=0;k<=14;k++)

for (n=0;n<=17;n++)

{

x0=30*n;

y0=30*k;

var x=27*Math.sin((i+k*2+n*3)*dig)+x0;

var y=27*Math.cos((i+k*2+n*3)*dig)+y0;

ctx.beginPath();

ctx.arc(x,y,3,0,Math.PI*2,true);

ctx.fillStyle = "black";

ctx.closePath();

ctx.fill();

}

i=i+1;

if (i>=48) i=0;

}

</script>

</body>

</html>

在浏览器中打开包含这段HTML代码的html文件,可以看到在浏览器窗口中呈现出如图4所示动感小球。

图4 动感小球

JavaScript动画实例:动感小球的更多相关文章

  1. JavaScript动画实例:李萨如曲线

    在“JavaScript图形实例:阿基米德螺线”和“JavaScript图形实例:曲线方程”中,我们学习了利用曲线的方程绘制曲线的方法.如果想看看曲线是怎样绘制出来的,怎么办呢?编写简单的动画,就可以 ...

  2. JavaScript动画实例:递归分形图动态展示

    在“JavaScript图形实例:SierPinski三角形” 和“JavaScript图形实例:Levy曲线及其变形”等文章中我们介绍了通过递归生成分形图形的方法.我们可以将绘制的分形图形每隔一定的 ...

  3. JavaScript动画实例:曲线的绘制

    在“JavaScript图形实例:曲线方程”一文中,我们给出了15个曲线方程绘制图形的实例.这些曲线都是根据其曲线方程,在[0,2π]区间取一系列角度值,根据给定角度值计算对应的各点坐标,然后在计算出 ...

  4. JavaScript动画实例:炸开的小球

    1.炸开的小球 定义一个小球对象类Ball,它有6个属性:圆心坐标(x,y).小球半径radius.填充颜色color.圆心坐标水平方向的变化量speedX.圆心坐标垂直方向的变化量speedY. B ...

  5. JavaScript动画实例:旋转的圆球

    1.绕椭圆轨道旋转的圆球 在Canvas画布中绘制一个椭圆,然后在椭圆上绘制一个用绿色填充的实心圆.之后每隔0.1秒刷新,重新绘制椭圆和实心圆,重新绘制时,实心圆的圆心坐标发生变化,但圆心坐标仍然位于 ...

  6. JavaScript动画实例:旋转的正三角形

    给定一个正三角形的重心坐标为(x0,y0),高为h,可以用如下的语句绘制一个底边水平的正三角形. ctx.beginPath(); ctx.moveTo(x0,y0-h*2/3); ctx.lineT ...

  7. JavaScript动画实例:沿五角星形线摆动的小圆

    五角星形线的笛卡尔坐标方程式可设为: r=10+(3*sin(θ*2.5))^2  x=r*cos(θ) y=r*sin(θ)              (0≤θ≤2π) 根据这个曲线方程,在[0,2 ...

  8. JavaScript动画实例:螺旋线

    数学中有各式各样富含诗意的曲线,螺旋线就是其中比较特别的一类.螺旋线这个名词来源于希腊文,它的原意是“旋卷”或“缠卷”.例如,平面螺旋便是以一个固定点开始向外逐圈旋绕而形成的曲线.在2000多年以前, ...

  9. JavaScript动画实例:运动的字母特效

    已知圆的坐标方程为: X=R*SIN(θ) Y=R*COS(θ)     (0≤θ≤2π) 给定初始坐标位置(X,Y),按照圆的坐标方程,从角度angle = 0开始,每间隔angleSpeed = ...

随机推荐

  1. Shell总结01-shell解释器

    常见Shell解释器种类 就像不同地区有不同方言一样,不同的Linux/Unix系统使用着不同类型的shell,其中sh是UNIX上的最基本的shell,遵循POSIX接口规范 操作系统 默认shel ...

  2. 非线性规划的Matlab 解法

    编写M 文件fun1.m 定义目标函数 function f=fun1(x); % 定义目标函数 f=sum(x.^)+; % .^2是矩阵中的每个元素都求平方.^2是求矩阵的平方或两个相同的矩阵相乘 ...

  3. Excel数据透视表的日常应用技巧

    对工作表中数据进行统计是经常需要的.一般情况我们都是使用菜单命令或函数来进行数据的统计的.可是如果要统计的工作表中记录很多,而且需要统计的项目也很多时,使用这种方法就显得力不从心了.请问还有什么更好的 ...

  4. 动作函数-web_custom_request

    web_custom_request("get_login", "URL=http://10.1.102.75:8000/login?user=Milton&pw ...

  5. Dubbo——服务引用

    文章目录 引言 正文 服务订阅 Invoker的创建 单注册中心的Invoker创建 Dubbo直连的Invoker创建 创建代理类 引言 上一篇我们分析了服务发布的原理,可以看到默认是创建了一个Ne ...

  6. 【JMeter_11】JMeter逻辑控制器__Switch控制器<Switch Controller>

    Switch控制器<Switch Controller> 业务逻辑: 取得switch value的值,通过对节点下所有取样器.逻辑控制器的下标.名称匹配去执行,switch value的 ...

  7. SLS编写规范

    SLS编写规范 规范要点说明 首先,状态的执行不可回滚,执行完了就是执行完了,并不会中断回滚,其次,状态的执行,可以反复执行,也就是说一个状态文件,可以多次来进行调用. 在编写状态文件过程中,有以下几 ...

  8. hexo搭建个人博客部署到个人服务器(git+nginx+hexo+next)

    本次以阿里云服务器为例,详细讲解步骤: 一.本地环境[客户端] 这里以本地的win10电脑为例 1.下载node, 默认安装,安装完成之后,node -v看看版本号 node下载 2.安装node(傻 ...

  9. 详述@Responsebody和HTTP异步请求的关系

    Map.ModelAndView.User.List等对象都可以作为返回值.上述这两种对象都可以使用此注解.使用此注解即表示是在同一次请求的响应体里返回.浏览器以异步http的方式来接收.比如后端的M ...

  10. SQL注入之报错注入常见函数