[Luogu P1066] 2^k进制数 (组合数或DP)
题面
传送门:https://www.luogu.org/problemnew/show/P1066



Solution
这是一道神奇的题目,我们有两种方法来处理这个问题,一种是DP,一种是组合数。
这题需要高精度,以下省略此声明
.
如果你对数学不感兴趣/喜欢写DP/(不想虐待自己),这里是DP做法。
首先,我们可以发现,这个数最多有w/k位(向上取整),如下图所示:

那么,我们就可以以这个特性做DP啦。
设f[i][j]表示枚举到第i位(指2^k进制下的),最后一位数为j。
f[i][j] = ∑ f[i-1][k] ((j==0 and k==0) or k<j)
这里的k显然是可以用前缀和优化的
初始化 f[1][i]=1 (i=0~2^(w%k)-1)
当然,还有一些小细节:f[倒数第2/第1个][0]=0
答案为∑f[w/k][i]
(因为我没写过DP做法,这个做法纯口胡,如有错误请通知蒟蒻博主)
那....组合数呢?
事实上,这题的组合数做法的确很妙,(当然也有不少细节)
假设我们枚举了第一位数,那么后面位数的方案数是可以通过组合数来计算出来的。
因为后面的数要比第一位大,那么后面的数相当于从 [第一位数+1,2^k-1] 这个数的区间中选出x个数(x为后面的位数数量)来 (因为每一种方案都可以通过摆成升序满足题目要求)。
但是考虑到有可能有若干个前导零,我们还要枚举第一个位数从哪开始。
因为枚举了前导零,我们枚举第一位数时应该从1开始(从0开始会有重复)
这样子,答案为:

(事实上口胡起来简单,写起来还有很多细节,这得亲自体会然后就会感到这题的毒瘤)
就酱,我们就可以切掉嘴巴AC出这道题啦(~ ̄▽ ̄)~
Code
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
struct Int128
{
static const int N=500;
int a[N],len;
Int128()
{
memset(a,0,sizeof a);
len=0;
}
void Print()
{
for(int i=len;i>=1;i--)
printf("%d",a[i]);
}
friend Int128 operator * (Int128 A,int B)
{
for(int i=1;i<=A.len;i++)
A.a[i]*=B;
bool IsFullZero=true;
for(int i=1;i<=A.len;i++)
{
if(A.a[i]>=10)
{
A.a[i+1]+=A.a[i]/10,A.a[i]%=10;
if(i==A.len and A.a[i+1]!=0)
A.len++;
}
if(A.a[i]!=0) IsFullZero=false;
}
if(IsFullZero==true) A.len=1;
return A;
}
friend Int128 operator / (Int128 A,int B)
{
Int128 ans;
int temp=0;
for(int i=A.len;i>=1;i--)
{
temp=temp*10+A.a[i];
if(temp>=B)
{
ans.a[i]=temp/B,temp=temp%B;
ans.len=max(ans.len,i);
}
}
return ans;
}
friend Int128 operator + (Int128 A,Int128 B)
{
if(A.len<B.len) swap(A,B);
for(int i=1;i<=A.len;i++)
{
A.a[i]=A.a[i]+B.a[i];
if(A.a[i]>9)
{
A.a[i+1]++;A.a[i]-=10;
if(i==A.len)
A.len++;
}
}
return A;
}
};
const int N=1<<(9+1);
Int128 C[N];
int n,x,K,w,first,m;
int main()
{
scanf("%d%d",&K,&w); first=1<<(w%K),x=w/K;
if(w%K==0)
first=1<<K,x--;
m=1<<K; Int128 ans;
for(int j=0;j<=x-1;j++)
{
int tx=x-j;
memset(C[tx].a,0,sizeof C[tx].a);
C[tx].a[1]=1,C[tx].len=1;
for(int i=tx+1;i<=m;i++)
{
memset(C[i].a,0,sizeof C[i].a);
C[i]=(C[i-1]*i)/(i-tx);
}
if(j!=0) first=m;
for(int i=1;i<m and i<first;i++)
{
if(m-1-i<tx) break;
ans=ans+C[m-1-i];
}
//ans.Print();
//cerr<<endl;
} ans.Print();
return 0;
}
[Luogu P1066] 2^k进制数 (组合数或DP)的更多相关文章
- [luogu]P1066 2^k进制数[数学][递推][高精度]
[luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...
- Luogu P1066 2^k进制数 组合数学
分两种情况:$k|n$和$k$不整除$n$ 如果$k|n$,那么长度为$n$的二进制数就能被恰好分成$n/k$个块:所以若某个数长度是$x$个块,由于每个块内能填不同的$2^k-1$个数,那么就有$C ...
- 洛谷P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- 洛谷 P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- 洛谷P1066 2^k进制数(题解)(递推版)
https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P106 ...
- [NOIP2006] 提高组 洛谷P1066 2^k进制数
题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后 ...
- P1066 2^k进制数
传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进 ...
- 【洛谷p1066】2^k进制数
(不会敲键盘惹qwq) 2^k进制数[传送门] 算法标签: (又是一个提高+省选-的题) 如果我说我没听懂你信吗 代码qwq: #include<iostream> #include< ...
- 一本通1649【例 2】2^k 进制数
1649:[例 2]2^k 进制数 时间限制: 1000 ms 内存限制: 524288 KB [题目描述] 原题来自:NOIP 2006 提高组 设 r 是个 2k 进制数,并满足以 ...
随机推荐
- spark-2-RDD
RDD提供了一个抽象的数据架构,我们不必担心底层数据的分布式特性,只需将具体的应用逻辑表达为一系列转换处理,不同RDD之间的转换操作形成依赖关系,可以实现管道化,从而避免了中间结果的存储,大大降低了数 ...
- SpringBoot2.3中@Async实现异步
启动加上@EnableAsync ,需要执行异步方法上加入@Async. 在方法上加上@Async之后 底层使用多线程技术. 不使用异步 先关代码: package com.yiyang.myfirs ...
- 利用mindmaster思维导图学好Python
- 005 01 Android 零基础入门 01 Java基础语法 01 Java初识 05 Eclipse简介
005 01 Android 零基础入门 01 Java基础语法 01 Java初识 05 Eclipse简介 Eclipse是一款集成开发工具--IDE. 集成开发环境(IDE,Integrated ...
- VS中OpenCV用imread读取不到图片
转自:https://blog.csdn.net/u012423865/article/details/78116059 在VS中OpenCV用imread读取不到图片 今天在Visual Studi ...
- JavaScript查找字符串中给定字符出现的位置以及次数
要求: 给定字符串oabcoefoxyozzopp,要求输出字符o出现的位置和次数. 实现思路: 先查找第一个o出现的位置 然后只要判断indexOf返回的结果,若不是-1,则继续往后查找 因为ind ...
- 多测师讲解常用的测试工具分为10类_高级讲师肖sir
我们将常用的测试工具分为10类. 1. 测试管理工具 2. 接口测试工具 3. 性能测试工具 4. C/S自动化工具 5.白盒测试工具 6.代码扫描工具 7.持续集成工具 8.网络测试工具 9.app ...
- 1、微信小程序开发介绍。
微信小程序如何能达到快速的开发效果,下面首先介绍一下需要的框架,使用这些框架可以减少大部分编写代码时间. 微信小程序使用的框架:weui开源框架 后端数据使用的框架(包含管理和api接口框架):YiS ...
- Linux下快速搭建测试网站DVWA
DVWA(Damn Vulnerable Web App)是一个基于PHP/MySql搭建的Web应用程序,旨在为安全专业人员测试自己的专业技能和工具提供合法的 环境,帮助Web开发者更好的理解Web ...
- centos8平台用redis-cli对redis5监控和管理
一,监控redis-server上正在执行的命令 1,打开a终端: [root@yjweb log]# /usr/local/soft/redis5/bin/redis-cli -h 127.0.0. ...