CGANs
Introducation
1. intruduce the conditional version of GANs, which can be constructed by simply feeding the data , y.
2. the CGANs can be used to learn a multi-modal model.
3.GANs in order to sidestep the difficulty of approximating many intractable probabilistic computations.(为了避免许多难以处理的概率计算的近似困难)
4. Adversarial nets have the advantages that Markov chains are never needed, only backpropagation is used to obtain gradients, no inference is required during learning,
and a wide variety of factors and interactions can easily be incorporated into the model.(多种因素和相互作用可以很容易地纳入模型)
5.马尔可夫链(Markov Chain),描述了一种状态序列,其每个状态值取决于前面有限个状态。一般来说,其核心是满足条件期望和平稳的分布,保证在计算过程中能够得到想要的概率分布。而我们考虑的生成模型恰好可能有以下两种情况:
输入一个随机分布的数据(例如一张黑白像素夹杂的噪音图),输出期望的数据(一张头像)
输入含有噪音的数据(在原有的图像上添加噪点或缺损),输出除去噪点或补完后的数据(完整的原始图像),这种情况下的模型也可以叫做任意去噪的自编码器。
无论是哪种情况,我们都希望从模型输出的数据y的概率分布尽可能逼近训练数据集的概率分布。但是让计算机生成一段音乐,或者一张有意义的图片,这个分布是非常复杂,很难求解的;即使通过马尔可夫链取样,得到了一个生成模型,我们最终也很难对这个模型的效果进行评估,因为生成的音乐到底好不好听,不同的人会得到不同的答案。
6. GANs can produce state of the art log-likehood estimate and realistic samples.
7. but
Related Work
1. the challeage of scaling models to accommodate an extremely large number of predicted output categories (调整模型以适应非常多的预测输出类别的挑战), to adress this problem by leveraging additional information such as using natural language corpora.and even a simple linear mapping from image feature-space to word-representation-space can improve.
2. the challage of focusing on learning one-to-one mapping from input to output,but many interesting problems belong to a probabilistic one-to-many mapping.to adress this challege by using a conditional probabilistic generative model , for example, the input is taken to be the conditioning variable and the one-to-many mapping is instantiated(实例化)as a conditional predictive distribution.
Method
1. to specify that the G can capture the data distribution and the D can estimate the probability that a sample came from the training data rather than G.
2. the input is z, G and D are both trained simultaneously. we adjust the parameters for G to minimize $log(1-D(G(z)))$ and adjust the parameters for D to minimize $log(D(X))$
Import Details -----Conditional Adversarial Nets
The training mechanism of CGANs.
1. GANs can be extended to a conditional model if both the G and D are conditioned on some extra information y.
2. y can be any kind of auxiliary information such as class label or data from other modalities.
3. feeding y into both discriminator and generator as additional input layer.
4. prior input noise and y are combined into joint hidden representation 对抗性训练框架允许在如何组成这种隐藏的表示方面具有相当大的灵活性。
5. In the discriminator and are presented as inputs and to a discriminative function (embodied x y again by a MLP in this case).
The formula of a objective function :
The framework of CGANs:
Experiment
1. this paper trained a CGANs on MNIST images conditioned on their class labels, encoded as one-hot vectors.
For G:
both z and y are mapped to hidden layers with RELU, with layer sizes 200 and 1000 respectively, then combined hidden ReLu layer of dimensionality 1200.
For D:
The discriminator maps to a maxout [6] layer with 240 units and 5 pieces, and to a maxout layer x y with 50 units and 5 pieces. Both of the hidden layers mapped to a joint maxout layer with 240 units and 4 pieces before being fed to the sigmoid layer
For Training:
and best estimate of log-likehood on the validation set was used as stopping point.(并以验证集的对数似然最优估计值作为停止点)。
Summary
CGANs outperforms compared with original GANs, we can combine the class label or data from other modalities into the input of G and D, in order to achieve conditional probabilities distribution and controlling GANs.
CGANs的更多相关文章
- (转)Deep Learning Research Review Week 1: Generative Adversarial Nets
Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Ge ...
- Unsupervised Image-to-Image Translation Networks --- Reading Writing
Unsupervised Image-to-Image Translation Networks --- Reading Writing 2017.03.03 Motivations: most ex ...
- Face Aging with Conditional Generative Adversarial Network 论文笔记
Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28 Motivation: 本文是要根据最新的条件产 ...
- #论文笔记# [pix2pixHD] High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. "High-Res ...
- StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation - 1 - 多个域间的图像翻译论文学习
Abstract 最近在两个领域上的图像翻译研究取得了显著的成果.但是在处理多于两个领域的问题上,现存的方法在尺度和鲁棒性上还是有所欠缺,因为需要为每个图像域对单独训练不同的模型.为了解决该问题,我们 ...
- CSAGAN:LinesToFacePhoto: Face Photo Generation from Lines with Conditional Self-Attention Generative Adversarial Network - 1 - 论文学习
ABSTRACT 在本文中,我们探讨了从线条生成逼真的人脸图像的任务.先前的基于条件生成对抗网络(cGANs)的方法已经证明,当条件图像和输出图像共享对齐良好的结构时,它们能够生成视觉上可信的图像.然 ...
- Learning Face Age Progression: A Pyramid Architecture of GANs-1-实现人脸老化
Learning Face Age Progression: A Pyramid Architecture of GANs Abstract 人脸年龄发展有着两个重要的需求,即老化准确性和身份持久性, ...
- AT指令集之Call
1.//unsolicited result code,URC表示BP->AP+ESIPCPI:<call_id>,<dir>,<sip_msg_type>, ...
- mtk 的conferrence call建立流程
(重点看main_log与) 抓mtk log: 1.*#*#82533284#*#* 进入抓log UI 2.*#*#825364#*#* 进入工程模式 3.进入"Lo ...
随机推荐
- Flutter学习二之Dart语言介绍
上次我记录了Flutter的环境搭建,这次来简单记录一下Drat语言,Flutter是 Google推出并开源的移动应用开发框架,开发语言是Dart,那么Dart语言和其他的语言在语法上有上面区别呢, ...
- pwnable.kr-uaf-witeup
没错,这道题超纲了,代码调试能力很差很差. 一些相关小笔记. UAF是在内存释放后,原指针仍然指向此内存,可通过其他填充操作将此内存值设为指定的值,使得指针指向特定值. 分析程序.本程序中,可输入1. ...
- 将SublimeText3打造成简易Java IDE
简介与优点 使用该教程,你能使你的Sublime Text3可以作为一个精简版的JAVA IDE工具 既可以独立在cmd控制台运行也可以在Sublime自带的控制台运行 运行后不会有乱码 报错后可以在 ...
- Vue 组件的基础介绍
1.组件定义 1.定义组件并引用 2.父组件向子组件传值 3.子组件向父组件传值 # 组件间传值:vuex (https://www.cnblogs.com/xiaonq/p/9697921.html ...
- Java 常用类-程序员头大的日期时间API
第二节.日期时间API 一.JDK8之前日期时间API 1.1 java.lang.System类 System类提供的public static long currentTimeMillis()用来 ...
- 18-SE-你说的都队
文章目录 前言 建设银行app分析 招商银行app分析 中国银行app分析 工商银行app分析 总结 团队成员分工与评分 前言 18-SE-你说的都队所选项目题目为"村镇银行储蓄业务系统开发 ...
- P1000 超级玛丽游戏
P1000 超级玛丽游戏 https://www.luogu.com.cn/problem/P1000 这就很简单了代码: #include <iostream> #include < ...
- [POI2009]ARC-Architects
[POI2009]ARC-Architects 题意: 给定一个序列,从中挑选k个数,满足下标单调递增,并且字典序最小: 思路: 由于字典序最小,所以考虑贪心,即前面的数尽可能大,所以用单调队列维护最 ...
- CSG:清华大学提出通过分化类特定卷积核来训练可解释的卷积网络 | ECCV 2020 Oral
论文提出类特定控制门CSG来引导网络学习类特定的卷积核,并且加入正则化方法来稀疏化CSG矩阵,进一步保证类特定.从实验结果来看,CSG的稀疏性能够引导卷积核与类别的强关联,在卷积核层面产生高度类相关的 ...
- vue : 无法加载文件 C:\Users\Lenovo\AppData\Roaming\npm\vue.ps1,因为在此系统上禁止运行脚本。
第一步:用管理员身份打开 第二步:执行:set-ExecutionPolicy RemoteSigned 选择Y或A,回车