Introducation

1. intruduce the conditional version of GANs, which can be constructed by simply feeding the data , y.

2. the CGANs can be used to learn a multi-modal model.

3.GANs in order to sidestep the difficulty of approximating many intractable probabilistic computations.(为了避免许多难以处理的概率计算的近似困难)

4. Adversarial nets have the advantages that Markov chains are never needed, only backpropagation is used to obtain gradients, no inference is required during learning,

and a wide variety of factors and interactions can easily be incorporated into the model.(多种因素和相互作用可以很容易地纳入模型)

5.马尔可夫链(Markov Chain),描述了一种状态序列,其每个状态值取决于前面有限个状态。一般来说,其核心是满足条件期望和平稳的分布,保证在计算过程中能够得到想要的概率分布。而我们考虑的生成模型恰好可能有以下两种情况:

  1. 输入一个随机分布的数据(例如一张黑白像素夹杂的噪音图),输出期望的数据(一张头像)

  2. 输入含有噪音的数据(在原有的图像上添加噪点或缺损),输出除去噪点或补完后的数据(完整的原始图像),这种情况下的模型也可以叫做任意去噪的自编码器。

无论是哪种情况,我们都希望从模型输出的数据y的概率分布尽可能逼近训练数据集的概率分布。但是让计算机生成一段音乐,或者一张有意义的图片,这个分布是非常复杂,很难求解的;即使通过马尔可夫链取样,得到了一个生成模型,我们最终也很难对这个模型的效果进行评估,因为生成的音乐到底好不好听,不同的人会得到不同的答案。

6. GANs can produce state of the art log-likehood estimate and realistic samples.

7. but

Related Work

1. the challeage of scaling models to accommodate an extremely large number of predicted output categories (调整模型以适应非常多的预测输出类别的挑战), to adress this problem by leveraging additional information such as using natural language corpora.and even a simple linear mapping from image feature-space to word-representation-space can improve. 

2. the challage of focusing on learning one-to-one mapping from input to output,but many interesting problems belong to a probabilistic one-to-many mapping.to adress this challege by using a conditional probabilistic generative model , for example, the input is taken to be the conditioning variable and the one-to-many mapping is instantiated(实例化)as a conditional predictive distribution.

Method

1. to specify that the G can capture the data distribution and the D can estimate the probability that a sample came from the training data rather than G.

2. the input is z,  G and D are both trained simultaneously. we adjust the parameters for G to minimize $log(1-D(G(z)))$ and adjust the parameters for D to minimize $log(D(X))$

Import Details -----Conditional Adversarial Nets

The training mechanism of CGANs.

1. GANs can be extended to a conditional model if both the G and D are conditioned on some extra information y.

2. y can be any kind of auxiliary information such as class label or data from other modalities.

3. feeding y into both discriminator and generator as additional input layer.

4. prior input noise and y are combined into joint hidden representation 对抗性训练框架允许在如何组成这种隐藏的表示方面具有相当大的灵活性。

5. In the discriminator and are presented as inputs and to a discriminative function (embodied x again by a MLP in this case).

The formula of a objective function :

The framework of CGANs:

Experiment 

 1. this paper trained a CGANs on MNIST images conditioned on their class labels, encoded as one-hot vectors.

For G:

both z and y are mapped to hidden layers with RELU, with layer sizes 200 and 1000 respectively, then combined hidden ReLu layer of dimensionality 1200.

For D: 

The discriminator maps to a maxout [6] layer with 240 units and 5 pieces, and to a maxout layer with 50 units and 5 pieces. Both of the hidden layers mapped to a joint maxout layer with 240 units and 4 pieces before being fed to the sigmoid layer

For Training:

and best estimate of log-likehood on the validation set was used as stopping point.(并以验证集的对数似然最优估计值作为停止点)。

 Summary

CGANs outperforms compared with original GANs, we can combine the class label or data from other modalities into the input of G and D, in order to achieve conditional probabilities distribution and controlling GANs.

 

CGANs的更多相关文章

  1. (转)Deep Learning Research Review Week 1: Generative Adversarial Nets

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Ge ...

  2. Unsupervised Image-to-Image Translation Networks --- Reading Writing

    Unsupervised Image-to-Image Translation Networks --- Reading Writing 2017.03.03 Motivations: most ex ...

  3. Face Aging with Conditional Generative Adversarial Network 论文笔记

    Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28  Motivation: 本文是要根据最新的条件产 ...

  4. #论文笔记# [pix2pixHD] High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs

    Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. "High-Res ...

  5. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation - 1 - 多个域间的图像翻译论文学习

    Abstract 最近在两个领域上的图像翻译研究取得了显著的成果.但是在处理多于两个领域的问题上,现存的方法在尺度和鲁棒性上还是有所欠缺,因为需要为每个图像域对单独训练不同的模型.为了解决该问题,我们 ...

  6. CSAGAN:LinesToFacePhoto: Face Photo Generation from Lines with Conditional Self-Attention Generative Adversarial Network - 1 - 论文学习

    ABSTRACT 在本文中,我们探讨了从线条生成逼真的人脸图像的任务.先前的基于条件生成对抗网络(cGANs)的方法已经证明,当条件图像和输出图像共享对齐良好的结构时,它们能够生成视觉上可信的图像.然 ...

  7. Learning Face Age Progression: A Pyramid Architecture of GANs-1-实现人脸老化

    Learning Face Age Progression: A Pyramid Architecture of GANs Abstract 人脸年龄发展有着两个重要的需求,即老化准确性和身份持久性, ...

  8. AT指令集之Call

    1.//unsolicited result code,URC表示BP->AP+ESIPCPI:<call_id>,<dir>,<sip_msg_type>, ...

  9. mtk 的conferrence call建立流程

    (重点看main_log与) 抓mtk log: 1.*#*#82533284#*#*      进入抓log UI 2.*#*#825364#*#*      进入工程模式 3.进入"Lo ...

随机推荐

  1. Kafka实战宝典:Kafka的控制器controller详解

    一.控制器简介 控制器组件(Controller),是 Apache Kafka 的核心组件.它的主要作用是在 Apache ZooKeeper 的帮助下管理和协调整个 Kafka 集群.集群中任意一 ...

  2. 记一次Java获取本地摄像头(基于OpenCV)

    OpenCV官网下载地址(下载安装后,在安装目录可以找到动态链接库和OpenCv.jar) https://opencv.org/releases/ 安装完成后,这是我的安装目录 maven 依赖(这 ...

  3. Shiro性能优化:解决Session频繁读写问题

    目录 背景 应对思路 本地缓存 Session 避免不必要的 Session 更新 代码实现 ShiroSessionDAO.java ShiroConfig.java 背景 Shiro 提供了强大的 ...

  4. 关于sqlmap当中tamper脚本编码绕过原理的一些总结(学习python没多久有些地方肯定理解有些小问题)

    sqlmap中tamper脚本分析编写 置十对一些编码实现的脚本,很多sqlmap里面需要引用的无法实现,所以有一部分例如keywords就只写写了几个引用了一下,其实这里很多脚本运用是可以绕过安全狗 ...

  5. 永久改变cmd背景颜色

    问题描述:cmd窗口为白底黑字,用久之后想换背景颜色. 解决方法一: win+R 输入regedis进入注册表,找到 HKEY_CURRENT_USER\Software\Microsoft\Comm ...

  6. spring多模块之间的调用

    https://blog.csdn.net/tomcat_2014/article/details/50206197?locationNum=5

  7. farbic-sdk-java 学习部署

    准备工作 1.fabric基础网络环境 2.环境准备(jdk环境.maven环境) 3.启动fabric测试网络 4.在idea中测试java-sdk 1.fabric环境准备 1.fabric基础环 ...

  8. ARM-Linux S5PV210 UART驱动(转)

    ARM-Linux S5PV210 UART驱动(3)----串口核心层.关键结构体.接口关系 尽管一个特定的UART设备驱动完全可以按照tty驱动的设计方法来设计,即定义tty_driver并实现t ...

  9. Javascript判断数据类型的五种方式及其特殊性

    Javascript判断数据类型的五种方式及区别 @ 目录 typeof instanceof Object.prototype.toString isArray iisNaN ----------- ...

  10. 发布MeteoInfo 2.3

    主要的更新如下: Using SVG icons in GUI. Update netCDF java library to 5.3.3. Update FlatLaf to 0.40. Update ...