高斯判别分析GDA推导与代码实现
高斯判别分析GDA推导与代码实现
生成学习
处理分类问题,我们可以使用逻辑回归、Softmax。这两种方法都属于“判别学习”,也就是给定 \((x^{(i)}, y^{(i)})\),我们学习 \(P(y|x)\),并对于给定的 \(x\),计算 \(\operatorname{argmax}_{y}\{P(y|x)\}\)。
GDA属于另一种方法——生成学习。在判别学习中,我们并不关注 \(x\) 本身的分布,而在生成学习中,我们基于一些事实假设 \(x\) 的分布,例如在GDA中,我们假设对于相同的 \(y\),\(x\) 符合高斯分布。然后基于假设,学习 \(P(x|y)\) 的参数(高斯分布则学习均值 \(\mu\) 和协方差 \(\Sigma\)),以及 \(P(y)\) 的参数(例如两点分布的 \(\phi\)),从而得到联合概率 \(P(x,y)\)。在预测时,我们仍然是找到最大的 \(P(y|x)\),但是是用贝叶斯公式计算:
\]
高斯判别分析
作出的假设
首先假设 \(Y\) 服从两点分布 \(Bernolli(\phi)\),于是可以写作 \(P(y)=\phi^{y}(1-\phi)^{1-y}\)。
(尽管可以直接用协方差定义多元变量的高斯分布,但是这里采用另一种方法,在特殊的情况下得到等式而不需要完全理解协方差矩阵。)
然后假设给定 \(y\) 后,\(x\) 的每一个分量 \(x_i\) 都服从高斯分布且相互独立。不妨设 \(y=0\),即 \(x_i|y=0\sim N(\mu_i,\sigma_i)\):
\]
又 \(x_i\) 相互独立,可以得到:
P(x|y=0)&=\prod_{i=1}^n\frac{1}{\sqrt{2\pi}\sigma_i}\exp\left(-\frac{(x_i-\mu_i)^2}{2\sigma_i^2}\right)\\
&=\frac{1}{(2\pi)^{\frac{n}{2}}\sigma_1\dots\sigma_n}\exp\left(-\frac{1}{2}\sum_{i=1}^n\frac{(x_i-\mu_i)^2}{\sigma_i^2}\right)\\
\end{aligned}
\]
我们定义矩阵 \(\Sigma=\begin{pmatrix}\sigma_1^2\\&\ddots\\&&\sigma_n^2\end{pmatrix}\),可以将上式化简:
\]
同样,我们也假设 \(x|y=1\) 符合高斯分布 \(N(\mu',\Sigma)\),需要注意的是,两个分布都采用了同一个 \(\Sigma\)(存疑,不知道目的)。
但是实际上GDA并没有假设 \(\Sigma\)
最大似然估计
在判别学习中,我们以 \(P(y^{(i)}\mid x^{i})\) 为似然函数,而在GDA这一类生成学习中,我们以联合概率 \(P(x^{(i)},y^{(i)})\) 为似然函数。也即最大化如下对数似然函数:
\mathcal{L}(\phi,\mu,\mu',\Sigma)&=\ln\prod_{i=1}^{m}P(x^{(i)},y^{(i)};\phi,\mu,\mu',\Sigma)\\
&=\ln\prod_{i=1}^{m}P(x^{(i)}\mid y^{(i)};\mu,\mu',\Sigma)P(y^{(i)};\phi)\\
&=\sum_{i=1}^{m}\ln P(x^{(i)}\mid y^{(i)};\mu,\mu',\Sigma)+\sum_{i=1}^m\ln P(y^{(i)};\phi)
\end{aligned}
\]
不同于逻辑回归,我们可以直接用导数为 \(0\) 求解参数。
计算 \(\phi\)
\frac{\partial \mathcal{L}}{\partial \phi}&=\frac{\partial}{\partial\phi}\sum_{i=1}^m\ln P(y^{(i)};\phi)\\
&=\frac{\partial}{\partial\phi}\sum_{i=1}^my^{(i)}\ln\phi+(1-y^{(i)})\ln(1-\phi)\\
&=\sum_{i=1}^m\frac{y^{(i)}}{\phi}-\frac{1-y^{(i)}}{1-\phi}
\end{aligned}
\]
令上式为 \(0\),得 \(\phi=\frac{\sum y^{(i)}}{m}\)。
计算 \(\mu,\mu'\)
一些无关紧要的常数用 \(C\) 代替,比如密度函数中的系数。
\nabla_{\mu}\mathcal{L}&=\nabla_{\mu}\sum_{i=1}^m(1-y^{(i)})\ln P(x^{(i)}\mid y=0;\mu,\Sigma)+y^{(i)}\ln P(x^{(i)}\mid y=1;\mu',\Sigma)
\end{aligned}
\]
其中
\frac{\partial}{\partial \mu_j}\ln P(x^{(i)}\mid y=0;\mu,\Sigma)&=\frac{\partial}{\partial \mu_j}\left(C-\frac{1}{2}\ln|\Sigma|-\frac{1}{2}(x^{(i)}-\mu)\Sigma^{-1}(x^{(i)}-\mu)^T\right)\\
&=x^{(i)}_j-\mu_j
\end{aligned}
\]
则 \(\nabla_{\mu}\ln P(x^{(i)}\mid y=0;\mu,\Sigma)=x^{(i)}-\mu\),进而
\]
令上式为 \(0\),可得 \(\mu=\frac{\sum(1-y^{(i)})x^{(i)}}{\sum 1-y^{(i)}}\),同理可得 \(\mu'=\frac{\sum y^{(i)}x^{(i)}}{\sum y^{(i)}}\)。
计算 \(\Sigma\)
下面用到了两个 \(\nabla\) 算符的性质:
- \(\nabla_{\Sigma}|\Sigma|=|\Sigma|\Sigma^{-1}\);
- \(\nabla_{\Sigma}\Sigma^{-1}=-\Sigma^{-2}\)。
\nabla_{\Sigma}\mathcal{L}&=\sum_{i=1}^m-\frac{1}{2|\Sigma|}\cdot\nabla_{\Sigma}|\Sigma|+\frac{1}{2}\nabla_{\Sigma}\left((x^{(i)}-\mu)\Sigma^{-1}(x^{(i)}-\mu)^{T}\right)\\
&=\sum_{i=1}^m-\frac{1}{2}\Sigma^{-1}+\frac{1}{2}(x^{(i)}-\mu)^T(x^{(i)}-\mu)\Sigma^{-2}
\end{aligned}
\]
同样地令上式为 \(0\),计算得
\]
注意到,按照我们的假设,\(\Sigma\) 应该是一个对角矩阵(如果了解协方差矩阵的话,由 \(x_i\) 相互独立,可以推出 \(\Sigma\) 应该是对角矩阵,对角元就是每个变量的方差),但是这里非常显然不总是对角矩阵。
(以下仅是我个人的猜测)在GDA的实现中,我们并没有关注 \(x_i\) 相互独立的性质,而是直接学习了一个普遍的协方差矩阵。实际上这种定义的限制更低,更符合现实情况(现实中的变量之间存在联系比较普遍)。
代码实现
直接计算这几个参数的代码不需要解释:
m, n = xs.shape
# Calculate mu
self.mu = np.zeros((2, n))
classes_size = np.zeros(2)
for i in range(m):
self.mu[ys[i]] += xs[i]
classes_size[ys[i]] += 1
self.mu /= np.transpose([classes_size])
# Calculate Sigma
self.sigma = np.zeros((n, n))
for i in range(m):
temp_array = xs[i] - self.mu[ys[i]]
self.sigma += np.dot(temp_array.reshape(n, 1), temp_array.reshape(1, n))
self.sigma /= m
# Calculate phi
self.phi = np.sum(ys) / m
最后我们发现计算概率需要计算 \(\Sigma^{-1}\),然而我们算出来的可能是一个奇异矩阵。这时候可以对 \(\Sigma\) 进行微扰——将对角元加上一个较小的偏差。
最后我们对 \(y=0,1\) 分别计算出 \(P(x|y)\)。
\]
但是实际上比较 \(P(x|y=0),P(x|y=1)\) 不需要真正计算出概率,而是比较两者不同的地方,也就是后面的 \(\exp\)。
(奇异矩阵的处理参考 https://blog.csdn.net/qq_30091945/article/details/81508055 ,对其中的 Gaussian 函数有修改)
最后是实现的一个类:
class GaussianDiscriminantAnalysis:
def __init__(self):
self.mu = None
self.phi = None
self.sigma = None
def fit(self, xs, ys, **others):
m, n = xs.shape
# Calculate mu
self.mu = np.zeros((2, n))
classes_size = np.zeros(2)
for i in range(m):
self.mu[ys[i]] += xs[i]
classes_size[ys[i]] += 1
self.mu /= np.transpose([classes_size])
# Calculate Sigma
self.sigma = np.zeros((n, n))
for i in range(m):
temp_array = xs[i] - self.mu[ys[i]]
self.sigma += np.dot(temp_array.reshape(n, 1), temp_array.reshape(1, n))
self.sigma /= m
# Calculate phi
self.phi = np.sum(ys) / m
def evaluate(self, x, mean, cov):
dim = np.shape(cov)[0]
# cov的行列式为零时的措施
cov_inv = np.linalg.inv(cov + np.eye(dim) * 0.001)
xdiff = (x - mean).reshape((1, dim))
# 概率密度
prob = np.exp(-0.5 * xdiff.dot(cov_inv).dot(xdiff.T))[0][0]
return prob
def predict(self, xs):
predict = []
for x in xs:
evaluate_0 = self.evaluate(x, self.mu[0], self.sigma) * (1 - self.phi)
evaluate_1 = self.evaluate(x, self.mu[1], self.sigma) * self.phi
if evaluate_0 > evaluate_1:
predict.append(0)
else:
predict.append(1)
return predict
高斯判别分析GDA推导与代码实现的更多相关文章
- 【cs229-Lecture5】生成学习算法:1)高斯判别分析(GDA);2)朴素贝叶斯(NB)
参考: cs229讲义 机器学习(一):生成学习算法Generative Learning algorithms:http://www.cnblogs.com/zjgtan/archive/2013/ ...
- Gaussian discriminant analysis 高斯判别分析
高斯判别分析(附Matlab实现) 生成学习算法 高斯判别分析(Gaussian Discriminant analysis,GDA),与之前的线性回归和Logistic回归从方法上讲有很大的不同,G ...
- 高斯判别分析 Gaussian Discriminant Analysis
如果在我们的分类问题中,输入特征xx是连续型随机变量,高斯判别模型(Gaussian Discriminant Analysis,GDA)就可以派上用场了. 以二分类问题为例进行说明,模型建立如下: ...
- [置顶] 生成学习算法、高斯判别分析、朴素贝叶斯、Laplace平滑——斯坦福ML公开课笔记5
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9285001 该系列笔记1-5pdf下载请猛击这里. 本篇博客为斯坦福ML公开 ...
- ML—高斯判别分析
华电北风吹 天津大学认知计算与应用重点实验室 日期:2015/12/11 高斯判别分析属于生成模型,模型终于学习一个特征-类别的联合概率. 0 多维正态分布 确定一个多维正态分布仅仅须要知道分布的均值 ...
- 《神经网络的梯度推导与代码验证》之FNN(DNN)的前向传播和反向推导
在<神经网络的梯度推导与代码验证>之数学基础篇:矩阵微分与求导中,我们总结了一些用于推导神经网络反向梯度求导的重要的数学技巧.此外,通过一个简单的demo,我们初步了解了使用矩阵求导来批量 ...
- 《神经网络的梯度推导与代码验证》之FNN(DNN)前向和反向过程的代码验证
在<神经网络的梯度推导与代码验证>之FNN(DNN)的前向传播和反向梯度推导中,我们学习了FNN(DNN)的前向传播和反向梯度求导,但知识仍停留在纸面.本篇章将基于深度学习框架tensor ...
- 《神经网络的梯度推导与代码验证》之CNN的前向传播和反向梯度推导
在FNN(DNN)的前向传播,反向梯度推导以及代码验证中,我们不仅总结了FNN(DNN)这种神经网络结构的前向传播和反向梯度求导公式,还通过tensorflow的自动求微分工具验证了其准确性.在本篇章 ...
- 《神经网络的梯度推导与代码验证》之CNN前向和反向传播过程的代码验证
在<神经网络的梯度推导与代码验证>之CNN的前向传播和反向梯度推导 中,我们学习了CNN的前向传播和反向梯度求导,但知识仍停留在纸面.本篇章将基于深度学习框架tensorflow验证我们所 ...
- 《神经网络的梯度推导与代码验证》之vanilla RNN的前向传播和反向梯度推导
在本篇章,我们将专门针对vanilla RNN,也就是所谓的原始RNN这种网络结构进行前向传播介绍和反向梯度推导.更多相关内容请见<神经网络的梯度推导与代码验证>系列介绍. 注意: 本系列 ...
随机推荐
- rust 模块、路径、项目类型等相关内容
rust 模块路径 转载 https://blog.csdn.net/wowotuo/article/details/107591501 rust 项目编译类型 转载 https://blog.51c ...
- CentOS7登录到控制台后无网络
1.找到网卡配置文件 ll /etc/sysconfig/network-scripts/ | grep ifcfg-en 2.编辑配置文件开启系统启动时自动启动网络,并保存文件 vi /etc/sy ...
- CentOS7安装了图形界面为默认如何修改默认登录到控制台
在安装的时候,选择了图形界面安装,一段时间后,想还是直接登录到控制台,需要的时候在手动登录到图形界面, 在CentOS7中的设置方法不同与之前的版本 在之前的版本中是修改配置文件 sudo nano ...
- 【已解决】将jsp文件在浏览器打开直接出现代码,在浏览器出现本地地址,tomcat报错
问题背景: 导入了一个项目直接打开可以,但是想跟一遍代码,把配置文件全部整理成为一个springmvc的基础配置文件 跟着配置到自己tomcat就不管怎样都是下面的截图 希望可以帮到一起报错的朋友快 ...
- H3C MS4300V2配置mac地址与接口绑定
配置mac地址与接口绑定 例: <h3c>system-view //进入系统视图 [h3c]int g 1/0/45 //进入45接口 [h3c-GigabitEthernet1 ...
- 关于vue项目和内嵌iframe页面之间的通信问题
最近项目中遇到一个与内嵌iframe页面之间通信的问题,起初与原生之间通信很简单,没想到过与vue项目通信的问题,霎时间一脸懵*啊,百度了一下,原来是那么简单,这里记录下以供下次参考 //vue页面 ...
- 有趣的python库-MyQR
MyQR-个性二维码 基本使用 from MyQR import myqr import os myqr.run( words="hu qing nian ni zhen bang, you ...
- GoAccess实现请求监
GoAccess实现请求监控 简介 GoAccess是一款开源的实时web日志分析器和交互式查看器,用于可视化查看HTTP统计信息,可以系统的终端上运行,也可以通过浏览器运行: 本文通过使用GoAcc ...
- Solon2 之基础:一、常用应用配置说明
约定参考: //资源路径约定(不用配置:也不能配置) resources/app.yml( 或 app.properties ) #为应用配置文件 resources/WEB-INF/static/ ...
- Hbase学习二:Hbase数据特点和架构特点
转载请注明出处: 1.Hbase数据特点 大:一个表可以有上亿行,上百万列. 面向列:面向列表(簇)的存储和权限控制,列(簇)独立检索. 稀疏:对于为空(NULL)的列,并不占用存储空间,因此,表可以 ...