P2501 [HAOI2006]数字序列 (LIS,DP)(未完成)
第二问好迷。。。
#include "Head.cpp"
#include <vector>
const int N = 35007;
vector<int> V[N];
int a[N], b[N], f[N];
int sum1[N], sum2[N], dp[N];
int main(){
int n;
io >> n;
R(i,1,n){
io >> a[i];
a[i] -= i;
}
a[++n] = 0x3f3f3f3f;
int len = 1;
b[len] = a[1];
f[1] = 1;
R(i,2,n){
if(a[i] >= b[len]){
b[++len] = a[i];
f[i] = len;
}
else{
int pos = upper_bound(b + 1, b + len + 1, a[i]) - b;
b[pos] = a[i];
f[i] = pos;
}
}
printf("%d\n", n - f[n]);
a[0] = -0x3f3f3f3f;
V[0].push_back(0);
R(i,1,n){
dp[i] = 0x3f3f3f3f;
for(vector<int>::iterator j = V[f[i] - 1].begin(); j != V[f[i] - 1].end(); ++j){
if(a[*j] > a[i]) continue;
sum1[*j - 1] = sum2[*j - 1] = 0;
R(k,*j,i){
sum1[k] = sum1[k - 1] + Abs(a[i] - a[k]);
sum2[k] = sum2[k - 1] + Abs(a[*j] - a[k]);
}
R(k,*j,i){
dp[i] = Min(dp[i], dp[*j] - sum2[*j] - sum1[k] + sum2[k] + sum1[i]);
}
}
V[f[i]].push_back(i);
}
printf("%d\n", dp[n]);
return 0;
}
P2501 [HAOI2006]数字序列 (LIS,DP)(未完成)的更多相关文章
- 2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS)
2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS) https://www.luogu.com.cn/problem/P2501 题意: 现在我们有一个长度为 n 的整 ...
- 洛谷 P2501 [HAOI2006]数字序列 解题报告
P2501 [HAOI2006]数字序列 题目描述 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大. ...
- Luogu P2501 [HAOI2006]数字序列
题目 首先把\(a\)改成严格单调上升等于把\(a_i-i\)改成单调不降. 那么第一问可以直接做LIS,答案就是\(n-\)LIS的长度. 同时我们记录一下序列中每个位置结尾的LIS长度. 第二问我 ...
- p2501 [HAOI2006]数字序列
传送门 分析 https://www.luogu.org/blog/FlierKing/solution-p2501 对于第二问的感性理解就是有上下两条线,一些点在上面的线的上面或者下面的线的下面,然 ...
- bzoj 1049: [HAOI2006]数字序列【dp+二分+瞎搞】
第一问明显就是用b[i]=a[i]-i来做最长不下降子序列 然后第二问,对于一对f[i]=f[j]+1的(i,j),中间的数一定要改的,并且是等于b[i]或者b[j],我不会证,然后因为是随机数据,所 ...
- 【BZOJ 1049】 1049: [HAOI2006]数字序列 (LIS+动态规划)
1049: [HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变 ...
- 【BZOJ1049】 [HAOI2006]数字序列
BZOJ1049 [HAOI2006]数字序列 dp好题? 第一问 第一问我会做!令\(b_i=a_i-i\),求一个最长不下降子序列. \(n-ans\)就是最终的答案. 第二问 好难啊.不会.挖坑 ...
- bzoj 1049 [HAOI2006]数字序列
[bzoj1049][HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不 ...
- 【BZOJ1049】【Luogu P2501】 [HAOI2006]数字序列 DP,结论,LIS
很有(\(bu\))质(\(hui\))量(\(xie\))的一个题目. 第一问:求最少改变几个数能把一个随机序列变成单调上升序列. \(Solution:\)似乎是一个结论?如果两个数\(A_i\) ...
随机推荐
- 使用git提交和拉取gitee的代码
使用git提交和拉取gitee的代码 1. 安装Git(自行摸索) 2. 在gitee新建仓库 名称和路径自己写 这两个二选一足矣 默认分支master就行 复制这个链接,待会要用 3. 新建项目目录 ...
- 【zigbee无线通信模块步步详解】ZigBee3.0模块建立远程网络控制方法
本文以路灯控制应用为例,简述ZigBee3.0模块使用流程. 一.建立网络 1.通过USB转串口模块将出厂的ZigBee自组网模块连接,打开上位机软件"E180-ZG120A-Setting ...
- 【视频】k8s套娃开发调试dapr应用 - 在6月11日【开源云原生开发者日】上的演示
这篇博客是在2022年6月11日的[开源云原生]大会上的演讲中的演示部分.k8s集群套娃(嵌套)是指在一个k8s的pod中运行另外一个k8s集群,这想法看上去很疯狂,实际上非常实用. k8s集群套娃( ...
- php个性代码注释
// _ooOoo_ // o8888888o // 88" . "88 // (| -_- |) // O\ = /O // ____/`---'\____ // . ' \ ...
- opencv-python保存视频
import cv2 class WVideoManager: def __init__(self, write_path: str, width: int, height: int, FPS: in ...
- UiPath屏幕抓取Screen Scraping的介绍和使用
一.屏幕抓取(Screen Scraping)的介绍 屏幕抓取使您能够在特定的UI元素或文档(如.PDF文档)中提取数据 二.屏幕抓取(Screen Scraping)在UiPath中的使用 [if ...
- bat-命令行配置静态IP地址
查看连接名称ipconfig 打开命令提示符,输入netsh后回车 输入interface后回车 输入ip,回车 输入set address "连接名称" static 新IP地址 ...
- Java中时间方法大全01(持续更新)
下面这些方法都可以封装到一个工具类中 /** * 获取当前时间的时间戳 */ public static int getCurrentTimeIntValue() { return (int) (Sy ...
- 面向个性化需求的在线云数据库混合调优系统 | SIGMOD 2022入选论文解读
SIGMOD 数据管理国际会议是数据库领域具有最高学术地位的国际性会议,位列数据库方向顶级会议之首.近日,腾讯云数据库团队的最新研究成果入选 SIGMOD 2022 Research Full Pap ...
- PTA(BasicLevel)-1031 查验身份证
一.问题定义 一个合法的身份证号码由17位地区.日期编号和顺序编号加1位校验码组成.校验码的计算规则如下:首先对前17位数字加权求和,权重分配为:{7,9,10,5,8,4,2,1,6,3,7,9,1 ...