\(\text{Problem}\)

JZOJ上,求

\[\sum_{i=1}^n \sum_{j=1}^m \gcd(i,j)^k
\]

对 \(10^9+7\) 取模

\(n,m,k \le 5 \times 10^6\)

LG 上,是一个加强版,有 \(T(T\le 2 \times 10^3)\) 组数据

\(\text{Analysis}\)

依照套路的方法,我们可以推出

\[Ans = \sum_{p=1} p^k \sum_{d=1} \mu(d) \lfloor \frac{n}{pd} \rfloor \lfloor \frac{m}{pd} \rfloor
\]

若只有一组数据,那么

数论分块套数论分块 \(O(n^{\frac{3}{4}})\) 即可

加上线筛 \(O(n)\)

\(\text{Code}\)

#include<cstdio>
#include<iostream>
#define LL long long
#define re register
using namespace std; const int N = 5e6, P = 1e9 + 7;
int n, m, k, totp, pr[N], vis[N + 5], sum[N + 5], pk[N + 5]; inline int fpow(LL x, LL y)
{
LL res = 1;
for(; y; y >>= 1)
{
if (y & 1) res = res * x % P;
x = x * x % P;
}
return res;
} inline void Euler()
{
vis[1] = sum[1] = pk[1] = 1;
for(re int i = 2; i <= N; i++)
{
if (!vis[i]) pr[++totp] = i, sum[i] = -1, pk[i] = fpow(i, k);
for(re int j = 1; j <= totp && i * pr[j] <= N; j++)
{
vis[i * pr[j]] = 1, pk[i * pr[j]] = (LL)pk[i] * pk[pr[j]] % P;
if (!(i % pr[j])) break;
sum[i * pr[j]] = -sum[i];
}
}
for(re int i = 1; i <= N; i++) sum[i] += sum[i - 1], pk[i] = (pk[i] + pk[i - 1]) % P;
} inline int F(int n, int m)
{
LL res = 0;
for(re int l = 1, r; l <= min(n, m); l = r + 1)
{
r = min(n / (n / l), m / (m / l));
res = (res + (LL)(sum[r] - sum[l - 1] + P) * (n / l) % P * (m / l)) % P;
}
return res;
} int main()
{
scanf("%d%d%d", &n, &m, &k);
Euler();
LL ans = 0;
for(re int l = 1, r; l <= min(n, m); l = r + 1)
{
r = min(n / (n / l), m / (m / l));
ans = (ans + (LL)(pk[r] - pk[l - 1] + P) * F(n / l, m / l) % P) % P;
}
printf("%lld\n", ans);
}

但LG上有多组数据,显然太慢了

同样套路地 \(T=pd\)

然后这个式子成了

\[\sum_{T=1} \lfloor \frac{n}{T} \rfloor \lfloor \frac{m}{T} \rfloor \sum_{d|T} d^k \mu(\frac{T}{d})
\]

\(g(d)=d^k\) 显然是个积性函数,然后 \(G=g * mu\) 也是个积性函数

于是我们考虑线筛预处理 \(G\),然后数论分快做到单次 \(O(\sqrt n)\)

根据积性函数性质有 \(G(d) = \prod_{i=1} G({p_i}^{c_i})\)

然后我们思考什么样的数有贡献

\[G(n) = \prod_{i=1} \sum_{j=0}^{c_i} \mu({p_i}^{j}) {p_i}^{(c_i-j)k}
\]

因为 \(\mu\) 的性质,我们知道,只有当 \(j=0\) 或 \(j=1\) 时有贡献,于是有

\[\begin{aligned}
G(n)
&= \prod_{i=1} \mu(1) {p_i}^{c_i k} + \mu(p_i) {p_i}^{(c_i-1)k} \\
&= \prod_{i=1} {p_i}^{c_i k} - {p_i}^{(c_i-1)k} \\
&= \prod_{i=1} {p_i}^{(c_i-1) k}({p_i}^k-1)
\end{aligned}
\]

当 \(c_i = 1\) 的时候,就是质数的时候,\(G(p)=p^k-1\)

因为 \(G\) 是积性函数,所以 \(G(ab)=G(a)G(b)(\gcd(a,b)=1)\)

若 \(a,b\) 不互质,因为在线筛时枚举质数,所以 \(b\in \mathbb P\),设 \(a = a' p^c(\gcd(a,a')=1)\)

那么 \(G(ab)=G(a')G(p^{c+1})=G(a')p^{ck}(p^k-1)\)

线筛过程中 \(p^{(c-1)k}(p^k-1)\) 已计入 \(G(ab)\) 中,所以本次再乘上 \(p^k\) 即可

综上

\[G(ab)=
\begin{cases}
G(a)G(b) & \gcd(a,b)=1 \\
G(a)b^k & \gcd(a,b)>1
\end{cases}
\]

线筛即可完美处理

\(\text{Code}\)

#include<cstdio>
#include<iostream>
#define LL long long
#define re register
using namespace std; const int N = 5e6, P = 1e9 + 7;
int n, m, k, totp, pr[N], vis[N + 5], pk[N + 5];
LL sum[N + 5]; inline int fpow(LL x, LL y)
{
LL res = 1;
for(; y; y >>= 1)
{
if (y & 1) res = res * x % P;
x = x * x % P;
}
return res;
} inline void Euler()
{
vis[1] = sum[1] = pk[1] = 1;
for(re int i = 2; i <= N; i++)
{
if (!vis[i]) pr[++totp] = i, pk[i] = fpow(i, k), sum[i] = (pk[i] - 1 + P) % P;
for(re int j = 1; j <= totp && i * pr[j] <= N; j++)
{
vis[i * pr[j]] = 1, pk[i * pr[j]] = (LL)pk[i] * pk[pr[j]] % P;
if (i % pr[j]) sum[i * pr[j]] = sum[i] * sum[pr[j]] % P;
else{sum[i * pr[j]] = sum[i] * pk[pr[j]] % P; break;}
}
}
for(re int i = 1; i <= N; i++) sum[i] = (sum[i] + sum[i - 1]) % P;
} int main()
{
int T; scanf("%d%d", &T, &k);
Euler();
for(; T; T--)
{
scanf("%d%d", &n, &m);
LL ans = 0;
for(re int l = 1, r; l <= min(n, m); l = r + 1)
{
r = min(n / (n / l), m / (m / l));
ans = (ans + (sum[r] - sum[l - 1] + P) * (n / l) % P * (m / l)) % P;
}
printf("%lld\n", ans);
}
}

LG P4449 & JZOJ 于神之怒的更多相关文章

  1. Solution -「洛谷 P4449」于神之怒加强版

    \(\mathcal{Description}\)   Link.   给定 \(k\) 和 \(T\) 组 \(n,m\),对于每组,求 \[\sum_{i=1}^n\sum_{j=1}^m\ope ...

  2. P4449 于神之怒加强版 (莫比乌斯反演)

    [题目链接] https://www.luogu.org/problemnew/show/P4449 给定n,m,k,计算 \(\sum_{i=1}^n \sum_{j=1}^m \mathrm{gc ...

  3. 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...

  4. P4449 于神之怒加强版

    \(\color{#0066ff}{ 题目描述 }\) 给定n,m,k,计算 \(\sum_{i=1}^n \sum_{j=1}^m \mathrm{gcd}(i,j)^k\) 对1000000007 ...

  5. 并不对劲的p4449于神之怒加强版

    题目大意 给定\(t,k(t\leq2000,k\leq5*10^6)\) \(t\)组询问,每组给出\(n,m(n,m\leq5*10^6)\)求$\sum_{i=1}^n \sum_{j=1}^m ...

  6. 题解 P4449 于神之怒加强版

    这道题算是我完完整整推的第一道题,写篇题解纪念一下. 题目 废话不多说,直接开始推式子(给新手准备,过程较详细,大佬可自行跳步),以下过程中均假设 \((n\le m)\),\([d=1]\) 类似于 ...

  7. [jzoj 6087] [GDOI2019模拟2019.3.26] 获取名额 解题报告 (泰勒展开+RMQ+精度)

    题目链接: https://jzoj.net/senior/#main/show/6087 题目: 题解: 只需要统计$\prod_{i=l}^r (1-\frac{a_i}{x})$ =$exp(\ ...

  8. Linux下安装性能测试负载机LG

    系统:CentOS release 6.6 (Final)  x86_64 安装包: 1.LRLG_00031.iso [Load Generator Standalone (Linux 64-bit ...

  9. bootstrap 之 xs,sm,md,lg && 主要颜色

    mobile – xs ( <768px ) tablet – sm ( 768~991px ) desktop – md ( 992~1170px ) large desktop – lg ( ...

  10. 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discu ...

随机推荐

  1. Linux面试题2:网络IO模型 & IO多路复用

    网络IO 先确定一下范围,我们讨论的都是网络IO,现阶段计算机早已经从CPU密集型转换成网络IO密集型,所以网络io的类型对于服务响应而言更重要. 五种IO模型 依据Unix的IO分类,网络IO分为五 ...

  2. Java开发学习(四十四)----MyBatisPlus查询语句之查询条件

    1.查询条件 前面我们只使用了lt()和gt(),除了这两个方法外,MybatisPlus还封装了很多条件对应的方法. MybatisPlus的查询条件有很多: 范围匹配(> . = .betw ...

  3. IDEA git配置

    必备:安装Idea \ git配置git坏境:在环境变量中添加git安装包bin目录即可 1.去git官网申请一个账号 https://github.com/ 创建一个新的项目 2.在快速启动栏或者g ...

  4. 外部引入css样式报错Resource interpreted as Stylesheet but transferred with MIME type html/text

    Resource interpreted as Stylesheet but transferred with MIME type html/text 解决方法: 1.将content-type改为t ...

  5. 编译器优化丨Cache优化

    摘要:本文重点介绍几种通过优化Cache使用提高程序性能的方法. 本文分享自华为云社区<编译器优化那些事儿(7):Cache优化>,作者:毕昇小助手. 引言 软件开发人员往往期望计算机硬件 ...

  6. 【每日一题】【小根堆&边出队边入队后续节点&注意判空】23. 合并K个升序链表-211128/220213

    给你一个链表数组,每个链表都已经按升序排列. 请你将所有链表合并到一个升序链表中,返回合并后的链表. 答案1(参数是数组): /** * Definition for singly-linked li ...

  7. 【敏捷研发系列】前端DevOps流水线实践

    作者:胡骏 一.背景现状 软件开发从传统的瀑布流方式到敏捷开发,将软件交付过程中开发和测试形成快速的迭代交付,但在软件交付客户之前或者使用过程中,还包括集成.部署.运维等环节需要进一步优化交付效率.因 ...

  8. 在nodejs中体验http/2

    前言 2015年,HTTP/2 发布,直到2021年公司的项目才开始在实践中应用:自己对http2诸多特点的理解只存在于字面上,于是尝试在nodejs中实践一下,加深自己的理解. 多路复用 同域名下所 ...

  9. java Jdbc 简单方法

    1.注册驱动(第一种方法) Class.forName(com.mysql.jdbc.Driver"); 2.获得连接DriverManager.getConnection(url,user ...

  10. Linux基础 文件和目录

    文件和目录 前言 本章讨论文件属性和文件系统内容.除了上一章讨论的普通文件,Linux的文件概念还包括:目录.设备等.在Linux系统中,文件的种类包括:普通文件.目录.符号链接.块设备.字符设备.管 ...