LG P4449 & JZOJ 于神之怒
\(\text{Problem}\)
JZOJ上,求
\]
对 \(10^9+7\) 取模
\(n,m,k \le 5 \times 10^6\)
LG 上,是一个加强版,有 \(T(T\le 2 \times 10^3)\) 组数据
\(\text{Analysis}\)
依照套路的方法,我们可以推出
\]
若只有一组数据,那么
数论分块套数论分块 \(O(n^{\frac{3}{4}})\) 即可
加上线筛 \(O(n)\)
\(\text{Code}\)
#include<cstdio>
#include<iostream>
#define LL long long
#define re register
using namespace std;
const int N = 5e6, P = 1e9 + 7;
int n, m, k, totp, pr[N], vis[N + 5], sum[N + 5], pk[N + 5];
inline int fpow(LL x, LL y)
{
LL res = 1;
for(; y; y >>= 1)
{
if (y & 1) res = res * x % P;
x = x * x % P;
}
return res;
}
inline void Euler()
{
vis[1] = sum[1] = pk[1] = 1;
for(re int i = 2; i <= N; i++)
{
if (!vis[i]) pr[++totp] = i, sum[i] = -1, pk[i] = fpow(i, k);
for(re int j = 1; j <= totp && i * pr[j] <= N; j++)
{
vis[i * pr[j]] = 1, pk[i * pr[j]] = (LL)pk[i] * pk[pr[j]] % P;
if (!(i % pr[j])) break;
sum[i * pr[j]] = -sum[i];
}
}
for(re int i = 1; i <= N; i++) sum[i] += sum[i - 1], pk[i] = (pk[i] + pk[i - 1]) % P;
}
inline int F(int n, int m)
{
LL res = 0;
for(re int l = 1, r; l <= min(n, m); l = r + 1)
{
r = min(n / (n / l), m / (m / l));
res = (res + (LL)(sum[r] - sum[l - 1] + P) * (n / l) % P * (m / l)) % P;
}
return res;
}
int main()
{
scanf("%d%d%d", &n, &m, &k);
Euler();
LL ans = 0;
for(re int l = 1, r; l <= min(n, m); l = r + 1)
{
r = min(n / (n / l), m / (m / l));
ans = (ans + (LL)(pk[r] - pk[l - 1] + P) * F(n / l, m / l) % P) % P;
}
printf("%lld\n", ans);
}
但LG上有多组数据,显然太慢了
同样套路地 \(T=pd\)
然后这个式子成了
\]
\(g(d)=d^k\) 显然是个积性函数,然后 \(G=g * mu\) 也是个积性函数
于是我们考虑线筛预处理 \(G\),然后数论分快做到单次 \(O(\sqrt n)\)
根据积性函数性质有 \(G(d) = \prod_{i=1} G({p_i}^{c_i})\)
然后我们思考什么样的数有贡献
\]
因为 \(\mu\) 的性质,我们知道,只有当 \(j=0\) 或 \(j=1\) 时有贡献,于是有
G(n)
&= \prod_{i=1} \mu(1) {p_i}^{c_i k} + \mu(p_i) {p_i}^{(c_i-1)k} \\
&= \prod_{i=1} {p_i}^{c_i k} - {p_i}^{(c_i-1)k} \\
&= \prod_{i=1} {p_i}^{(c_i-1) k}({p_i}^k-1)
\end{aligned}
\]
当 \(c_i = 1\) 的时候,就是质数的时候,\(G(p)=p^k-1\)
因为 \(G\) 是积性函数,所以 \(G(ab)=G(a)G(b)(\gcd(a,b)=1)\)
若 \(a,b\) 不互质,因为在线筛时枚举质数,所以 \(b\in \mathbb P\),设 \(a = a' p^c(\gcd(a,a')=1)\)
那么 \(G(ab)=G(a')G(p^{c+1})=G(a')p^{ck}(p^k-1)\)
线筛过程中 \(p^{(c-1)k}(p^k-1)\) 已计入 \(G(ab)\) 中,所以本次再乘上 \(p^k\) 即可
综上
\begin{cases}
G(a)G(b) & \gcd(a,b)=1 \\
G(a)b^k & \gcd(a,b)>1
\end{cases}
\]
线筛即可完美处理
\(\text{Code}\)
#include<cstdio>
#include<iostream>
#define LL long long
#define re register
using namespace std;
const int N = 5e6, P = 1e9 + 7;
int n, m, k, totp, pr[N], vis[N + 5], pk[N + 5];
LL sum[N + 5];
inline int fpow(LL x, LL y)
{
LL res = 1;
for(; y; y >>= 1)
{
if (y & 1) res = res * x % P;
x = x * x % P;
}
return res;
}
inline void Euler()
{
vis[1] = sum[1] = pk[1] = 1;
for(re int i = 2; i <= N; i++)
{
if (!vis[i]) pr[++totp] = i, pk[i] = fpow(i, k), sum[i] = (pk[i] - 1 + P) % P;
for(re int j = 1; j <= totp && i * pr[j] <= N; j++)
{
vis[i * pr[j]] = 1, pk[i * pr[j]] = (LL)pk[i] * pk[pr[j]] % P;
if (i % pr[j]) sum[i * pr[j]] = sum[i] * sum[pr[j]] % P;
else{sum[i * pr[j]] = sum[i] * pk[pr[j]] % P; break;}
}
}
for(re int i = 1; i <= N; i++) sum[i] = (sum[i] + sum[i - 1]) % P;
}
int main()
{
int T; scanf("%d%d", &T, &k);
Euler();
for(; T; T--)
{
scanf("%d%d", &n, &m);
LL ans = 0;
for(re int l = 1, r; l <= min(n, m); l = r + 1)
{
r = min(n / (n / l), m / (m / l));
ans = (ans + (sum[r] - sum[l - 1] + P) * (n / l) % P * (m / l)) % P;
}
printf("%lld\n", ans);
}
}
LG P4449 & JZOJ 于神之怒的更多相关文章
- Solution -「洛谷 P4449」于神之怒加强版
\(\mathcal{Description}\) Link. 给定 \(k\) 和 \(T\) 组 \(n,m\),对于每组,求 \[\sum_{i=1}^n\sum_{j=1}^m\ope ...
- P4449 于神之怒加强版 (莫比乌斯反演)
[题目链接] https://www.luogu.org/problemnew/show/P4449 给定n,m,k,计算 \(\sum_{i=1}^n \sum_{j=1}^m \mathrm{gc ...
- 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演
https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...
- P4449 于神之怒加强版
\(\color{#0066ff}{ 题目描述 }\) 给定n,m,k,计算 \(\sum_{i=1}^n \sum_{j=1}^m \mathrm{gcd}(i,j)^k\) 对1000000007 ...
- 并不对劲的p4449于神之怒加强版
题目大意 给定\(t,k(t\leq2000,k\leq5*10^6)\) \(t\)组询问,每组给出\(n,m(n,m\leq5*10^6)\)求$\sum_{i=1}^n \sum_{j=1}^m ...
- 题解 P4449 于神之怒加强版
这道题算是我完完整整推的第一道题,写篇题解纪念一下. 题目 废话不多说,直接开始推式子(给新手准备,过程较详细,大佬可自行跳步),以下过程中均假设 \((n\le m)\),\([d=1]\) 类似于 ...
- [jzoj 6087] [GDOI2019模拟2019.3.26] 获取名额 解题报告 (泰勒展开+RMQ+精度)
题目链接: https://jzoj.net/senior/#main/show/6087 题目: 题解: 只需要统计$\prod_{i=l}^r (1-\frac{a_i}{x})$ =$exp(\ ...
- Linux下安装性能测试负载机LG
系统:CentOS release 6.6 (Final) x86_64 安装包: 1.LRLG_00031.iso [Load Generator Standalone (Linux 64-bit ...
- bootstrap 之 xs,sm,md,lg && 主要颜色
mobile – xs ( <768px ) tablet – sm ( 768~991px ) desktop – md ( 992~1170px ) large desktop – lg ( ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
随机推荐
- NOIP 口胡
因为没准备啥东西 这两天口胡一下近年 NOIP 的题 大概会一道不落?没什么很寄的考点主要是 2021 T1 报数 打一个 \(O(\log n)\) 查询 \(n\) 中是否有 \(7\),打一个类 ...
- Java实现Excel批量导入数据库
场景说明 在实际开发中,经常需要解析Excel数据来插入数据库,而且通常会有一些要求,比如:全部校验成功才入库.校验成功入库,校验失败返回提示(总数.成功数.失败数.失败每行明细.导出失败文件明细-) ...
- 【Java EE】Day09 JavaScript基础
一.JavaScript简介 二.JavaScript语法 三.JavaScript对象
- SQL语句筛选/查询
目录 SQL语句查询关键词 查询关键字之where筛选 查询关键字之分组 group by Group_concat 方法 查询关键字之having过滤 查询关键字之去重distinct 关键字之or ...
- 【数据结构与算法】希尔排序 python和c++实现
算法思路 每一次:固定间隔把数据分组,每一组进行排序 每次比上次选取更小的间隔分组,再每组排序,直到间隔为1 代码 c++:(越看越不明白了,后看) int gap = length;//length ...
- Java-递归查询法
递归查询用户所在团队的老大的用户id(一个团队中,只有一个老大,也就是父级id="-1") 如下:是表结构 first_agent_id----用户的上级id user_id--- ...
- 聚焦技术,锐意创新,GaussDB给世界一个更优选择
摘要:从整个行业应用层面来看,现在,数据库的国产化时代已经到来. 本文分享自华为云社区<聚焦技术,锐意创新,GaussDB给世界一个更优选择>,作者: GaussDB数据库. 今天,以&q ...
- 论文解读丨【CVPR 2022】不使用人工标注提升文字识别器性能
摘要:本文提出了一种针对文字识别的半监督方法.区别于常见的半监督方法,本文的针对文字识别这类序列识别问题做出了特定的设计. 本文分享自华为云社区<[CVPR 2022] 不使用人工标注提升文字识 ...
- Django推导流程,Django模块的下载和基本使用、Django的应用和目录结构讲解、Django三板斧
今日内容 纯手撸web框架 1.web框架的本质: 理解1:连接前端与数据库的中间介质 理解2:socket服务端 2.手写web框架: 1.编写socket服务端代码 import socket s ...
- day08-AOP-01
AOP 1.官方文档 AOP讲解:下载的spring文件-->spring-framework-5.3.8/docs/reference/html/core.html#aop AOP APIs: ...