loj#6072 苹果树(折半搜索,矩阵树定理,容斥)
loj#6072 苹果树(折半搜索,矩阵树定理,容斥)
题解时间
$ n \le 40 $ 。
无比精确的数字。
很明显只要一个方案不超过 $ limits $ ,之后的计算就跟选哪个没关系了。
折半搜索排序来统计有i个果子是有用的情况下的方案数。
然后矩阵树求生成树个数,容斥乱搞。
#include<bits/stdc++.h>
using namespace std;
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
namespace RKK
{
const int N=50,mo=1000000007;
void doadd(int &a,int b){if((a+=b)>=mo)a-=mo;}
int add(int a,int b){return (a+=b)>=mo?a-mo:a;}
int fpow(int a,int p){int ret=1;while(p){if(p&1)ret=1ll*ret*a%mo;a=1ll*a*a%mo,p>>=1;}return ret;}
struct pat{int x,y;bool operator < (const pat &p)const{return x<p.x;}};
int n,halfn,lim,val[N],msn;
pat l1[1145141];int tp1;
pat l2[1145141];int tp2;
void dfs1(int x=1,int sum=0,int cnt=0)
{
if(sum>lim) return;if(x>halfn){l1[++tp1]=(pat){sum,cnt};return;}
dfs1(x+1,sum,cnt);if(~val[x]) dfs1(x+1,sum+val[x],cnt+1);
}
void dfs2(int x=halfn+1,int sum=0,int cnt=0)
{
if(sum>lim) return;if(x>n){l2[++tp2]=(pat){sum,cnt};return;}
dfs2(x+1,sum,cnt);if(~val[x]) dfs2(x+1,sum+val[x],cnt+1);
}
int c[N][N];void init(){for(int i=0;i<=40;i++){c[i][0]=1;for(int j=1;j<=i;j++)c[i][j]=add(c[i-1][j-1],c[i-1][j]);}}
int ma[N][N];
int calc(int sn)
{
memset(ma,0,sizeof(ma));
for(int i=1;i<=n;i++)for(int j=i+1;j<=n;j++)
{
if((i<=sn&&(j<=sn||j>msn))||i>msn||j>msn)
ma[i][i]++,ma[j][j]++,doadd(ma[i][j],mo-1),doadd(ma[j][i],mo-1);
}
int b=n-1;int f=1;
for(int l=1;l<=b;l++)
{
int g=l;for(;g<=b&&!ma[g][l];g++);if(g>b) return 0;
if(g!=l){for(int j=l;j<=b;j++) swap(ma[l][j],ma[g][j]);f=-f;}
for(g=l+1;g<=b;g++)
{
int k=1ll*ma[g][l]*fpow(ma[l][l],mo-2)%mo;
for(int j=l;j<=b;j++) doadd(ma[g][j],mo-1ll*ma[l][j]*k%mo);
}
}
if(f==-1) f=mo-1;
for(int i=1;i<=b;i++) f=1ll*f*ma[i][i]%mo;
return f;
}
int cnt[N],sum[N];
int cnttmp[N];
int main()
{
read(n),read(lim),halfn=n+1>>1;
for(int i=1;i<=n;i++) read(val[i]),msn+=(val[i]!=-1);
dfs1(),dfs2();init();
sort(l1+1,l1+tp1+1),sort(l2+1,l2+tp2+1);
for(int i1=tp1,i2=1;i1;i1--)
{
for(;i2<=tp2&&l1[i1].x+l2[i2].x<=lim;cnttmp[l2[i2].y]++,i2++);
for(int j=0;j<=n;j++) doadd(cnt[l1[i1].y+j],cnttmp[j]);
}
for(int i=0;i<=msn;i++) sum[i]=calc(i);
for(int i=1;i<=msn;i++)for(int j=0;j<i;j++)
doadd(sum[i],mo-1ll*c[i][j]*sum[j]%mo);
int ans=0;
for(int i=0;i<=msn;i++) doadd(ans,1ll*cnt[i]*sum[i]%mo);
printf("%d\n",ans);
return 0;
}
}
int main(){return RKK::main();}
loj#6072 苹果树(折半搜索,矩阵树定理,容斥)的更多相关文章
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- 【bzoj4596】[Shoi2016]黑暗前的幻想乡 (矩阵树定理+容斥)
Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类)博丽灵梦和八云紫等人整日高谈所有妖怪平等 ...
- [SHOI2016] 黑暗前的幻想乡 - 矩阵树定理,容斥
#include <bits/stdc++.h> using namespace std; #define int long long const int N = 20; const in ...
- 洛谷 P4336 黑暗前的幻想乡 —— 容斥+矩阵树定理
题目:https://www.luogu.org/problemnew/show/P4336 当作考试题了,然而没想出来,呵呵. 其实不是二分图完美匹配方案数,而是矩阵树定理+容斥... 就是先放上所 ...
- 【LOJ#6072】苹果树(矩阵树定理,折半搜索,容斥)
[LOJ#6072]苹果树(矩阵树定理,折半搜索,容斥) 题面 LOJ 题解 emmmm,这题似乎猫讲过一次... 显然先\(meet-in-the-middle\)搜索一下对于每个有用的苹果数量,满 ...
- LOJ #6044 -「雅礼集训 2017 Day8」共(矩阵树定理+手推行列式)
题面传送门 一道代码让你觉得它是道给初学者做的题,然鹅我竟没想到? 首先考虑做一步转化,我们考虑将整棵树按深度奇偶性转化为一张二分图,即将深度为奇数的点视作二分图的左部,深度为偶数的点视作二分图的右部 ...
- [专题总结]矩阵树定理Matrix_Tree及题目&题解
专题做完了还是要说两句留下什么东西的. 矩阵树定理通俗点讲就是: 建立矩阵A[i][j]=edge(i,j),(i!=j).即矩阵这一项的系数是两点间直接相连的边数. 而A[i][i]=deg(i). ...
- 4.9 省选模拟赛 生成树求和 变元矩阵树定理 生成函数 iDFT 插值法
有同学在loj上找到了加强版 所以这道题是可以交的.LINK:生成树求和 加强版 对于30分 爆搜 可实际上我爆搜只过了25分 有同学使用按秩合并并茶几的及时剪枝通过了30分. const int M ...
- loj6271 「长乐集训 2017 Day10」生成树求和 加强版(矩阵树定理,循环卷积)
loj6271 「长乐集训 2017 Day10」生成树求和 加强版(矩阵树定理,循环卷积) loj 题解时间 首先想到先分开三进制下每一位,然后每一位分别求结果为0,1,2的树的个数. 然后考虑矩阵 ...
随机推荐
- MXNet学习:试用卷积-训练CIFAR-10数据集
第一次用卷积,看的别人的模型跑的CIFAR-10,不过吐槽一下...我觉着我的965m加速之后比我的cpu算起来没快多少..正确率64%的样子,没达到模型里说的75%,不知道问题出在哪里 import ...
- Solution -「CCO 2019」「洛谷 P5532」Sirtet
\(\mathcal{Description}\) Link. 在一个 \(n\times m\) 的网格图中,每个格子上是空白 . 或沙子 #,四联通的沙子会连成一个整体.令此时所有沙子块同 ...
- Spring5基础
基于Spring 5.2.6 版本. Spring概念 IOC容器 IOC底层原理的演进过程--本质就是为了高内聚,低耦合 在原始方式中,我们通过new创建对象来实现创建对象的逻辑,但是这样做当对象路 ...
- MTK sensor 架构
mtk architactureAP和scp 两部分组成从上到下的整体的结构是 app -->framerwork-->native-->hal -->kernel --> ...
- vue3-hash-calendar,一款基于vue3.x开发的移动端日期时间选择组件
在大家的催更下,鸽了一天又一天,vue3-hash-calendar 终于在今天诞生了. 按照惯例,先上效果图 Demo 扫描上方二维码或者请用浏览器的手机模式查看:https://www.hxkj. ...
- [题解]RQNOJ PID87 过河
链接:http://www.rqnoj.cn/problem/87 思路:动态规划 定义f[i][j]表示到达第 i 块给定石头用了 j 块添加石头的最少步数. 转移方程:f[i][j]=min{f[ ...
- Oracle之单行函数(字符串函数/数字函数/转换函数/日期函数/通用函数)
虚拟表DUAL介绍: dual是一张虚拟表,只有一行一列,用来构成select的语法规则. Oracle的查询中,必须使用"select 列- from 表"的完整语法,当查询单行 ...
- vmware启动报错:Failed to load SELinux policy. Freezing
修改 : SELINUX=disabled 正确 误修改: SELINUXTYPE=disabled 错误 导致无法开机 错误结果 重启后 机器就报 Failed to load SELi ...
- Qt:QJsonDocument以及与QJsonArray、QJsonObject、QJsonValue的关联
0.说明 QJsonDocument类提供了read/write JSON文档的方法. 用QJsonDocument::fromJson()方法,可以从将一个JSON文件(或者QByteArray数据 ...
- Pycharm:使用Edit Custom VM Options导致Pycharm无法启动
解决办法: Edit Custom VM Options用来扩大内存,但是内存设置不当可能会导致Pycharm无法启动 如果无法启动,可以在我的文档中的pycharm201X.X(日期不同名字也不同) ...