一 原始数据处理
1.输入数据得到a[1]~a[n],复制扩展a[n+1]~a[2*n],以便处理不同点为起点出发。 cin>>n>>m;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
a[i+n]=a[i];
}
2.计算前缀和
sum[1]=a[1];
for(int i=2;i<=2*n;i++) sum[i]=sum[i-1]+a[i];
3.除余计算函数
int mod10(int k)
{
return (k%10+10)%10;
}
二 dp数组定义及转移方程
1 dp定义
dpma [i][j][m] 表示i为起点j为终点,划分m份的最大值;
dpmi [i][j][m] 表示i为起点j为终点,划分m份的最小值;
2 根据定义初始化
dpma [i][j][1];
dpmi [i][j][1];
for(int i=1;i<=2*n;i++)
{
for (int j=i;j<=2*n;j++)
{
dpmi[i][j][1]=dpma[i][j][1]=mod10(sum[j]-sum[i-1]);
for(int len=2;len<=m;len++)
{
dpmi[i][j][len]=2e9;
dpma[i][j][len]=0;
}
}
}
3转移方程: dpma[i][j][len]=max(1ll*dpma[i][mid][num]*dpma[mid+1][j][len-num],1ll*dpma[i][j][len]));
dpmi[i][j][len]=min(1ll*dpmi[i][mid][num]*dpmi[mid+1][j][len-num],1ll*dpmi[i][j][len])); len 范围[2,m],最外层循环,用来遍历所有分的份数(因为份数为1的都已初始化)
num是分堆数量取值范围[1,len-1],用来遍历len堆的方法,len=5,那么num可分成1,4;2,3;3,2;4,1;
i的范围[1,2*n],j的范围[i,2*n],用来遍历起始点。
mid为i~j之间的划分点 ,mid 取值范围[i,j-1]
举例说明mid的必要性,样例a[]={2,-1,3,4},
求dp[1][3][2],
存在{2},{-1,3}和{2,-1},{3}按照划mid分点不同存在两种情况,
应比较dp[1][1][1]*dp[2][3][1]和dp[1][2][1]*dp[3][3][1]两者取大
防止dpmi超int界,乘1ll转化为长整型 4 求最大最小值
int maxans=0,minans=2e9;
for(int i=1;i<=n;i++)
{
maxans=max(dpma[i][i+n-1][m],maxans);
minans=min(dpmi[i][i+n-1][m],minans);
}

代码:

 1 #include<bits/stdc++.h>
2 #define LL long long
3 using namespace std;
4 int dpmi[200][200][200],dpma[200][200][200]={0};
5 int n,m,a[200]={0},sum[200]={0};
6 int mod10(int n)
7 {
8 return (n%10+10)%10;
9 }
10
11 int main()
12 {
13 // freopen("1.in","r",stdin);
14 // freopen("1.out","w",stdout);
15 cin>>n>>m;
16 for(int i=1;i<=n;i++)
17 {
18 scanf("%d",&a[i]);
19 a[i+n]=a[i];
20 }
21
22 sum[1]=a[1];
23 for(int i=2;i<=2*n;i++) sum[i]=sum[i-1]+a[i];
24
25 for(int i=1;i<=2*n;i++)
26 {
27 for(int j=i;j<=2*n;j++)
28 {
29 dpmi[i][j][1]=dpma[i][j][1]=mod10(sum[j]-sum[i-1]);
30 for(int len=2;len<=m;len++)
31 {
32 dpmi[i][j][len]=2e9;
33 dpma[i][j][len]=-1;
34 }
35 }
36 }
37
38
39 for(int len=2;len<=m;len++)
40 {
41 for(int num=1;num<len;num++)
42 {
43 for(int i=1;i<=2*n;i++)
44 {
45 for(int j=i;j<=2*n;j++)
46 {
47 for(int mid=i;mid<=j-1;mid++)
48 {
49 dpma[i][j][len]=max(1ll*dpma[i][mid][num]*dpma[mid+1][j][len-num],1ll*dpma[i][j][len]);
50 dpmi[i][j][len]=min(1ll*dpmi[i][mid][num]*dpmi[mid+1][j][len-num],1ll*dpmi[i][j][len]);
51 }
52 }
53 }
54 }
55 }
56 int maxans=-1000,minans=2e9;
57 for(int i=1;i<=n;i++)
58 {
59 maxans=max(dpma[i][i+n-1][m],maxans);
60 minans=min(dpmi[i][i+n-1][m],minans);
61 }
62 printf("%d\n%d",minans,maxans);
63 return 0;
64 }

数字游戏(NOIP 2003 PJT2)的更多相关文章

  1. 1085 数字游戏 2003年NOIP全国联赛普及组

    丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分为m个部分 ...

  2. NOIP 数字游戏

    描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分为m ...

  3. codevs 1085 数字游戏 dp或者暴搜

    1085 数字游戏 2003年NOIP全国联赛普及组  时间限制: 1 s  空间限制: 128000 KB     题目描述 Description 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单 ...

  4. Codevs 1085 数字游戏

    1085 数字游戏 2003年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 丁丁最近沉迷于一个数字游戏之中 ...

  5. 1861 奶牛的数字游戏 2006年USACO

    codevs——1861 奶牛的数字游戏 2006年USACO  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 青铜 Bronze 题解       题目描述 Descript ...

  6. C语言猜数字游戏

    猜数字游戏,各式各样的实现方式,我这边提供一个实现方式,希望可以帮到新手. 老程序猿就不要看了,黑呵呵 源代码1 include stdio.h include stdlib.h include ti ...

  7. 不一样的猜数字游戏 — leetcode 375. Guess Number Higher or Lower II

    好久没切 leetcode 的题了,静下心来切了道,这道题比较有意思,和大家分享下. 我把它叫做 "不一样的猜数字游戏",我们先来看看传统的猜数字游戏,Guess Number H ...

  8. java 猜数字游戏

    作用:猜数字游戏.随机产生1个数字(1~10),大了.小了或者成功后给出提示. 语言:java 工具:eclipse 作者:潇洒鸿图 时间:2016.11.10 >>>>> ...

  9. 【原创Android游戏】--猜数字游戏Version 0.1

    想当年高中时经常和小伙伴在纸上或者黑板上或者学习机上玩猜数字的游戏,在当年那个手机等娱乐设备在我们那还不是很普遍的时候是很好的一个消遣的游戏,去年的时候便写了一个Android版的猜数字游戏,只是当时 ...

  10. 【原创Android游戏】--猜数字游戏V1.1 --数据存储,Intent,SimpleAdapter的学习与应用

    --------------------------------------------------------------- V0.1版本 上次做完第一个版本后,发现还有一些漏洞,并且还有一些可以添 ...

随机推荐

  1. 【深入浅出 Yarn 架构与实现】2-1 Yarn 基础库概述

    了解 Yarn 基础库是后面阅读 Yarn 源码的基础,本节对 Yarn 基础库做总体的介绍.并对其中使用的第三方库 Protocol Buffers 和 Avro 是什么.怎么用做简要的介绍. 一. ...

  2. 第一百零七篇:基本数据类型(undefined,null,boolean类型)

    好家伙, 本篇内容为<JS高级程序设计>第三章学习笔记 1.数据类型 ECMAScript有6种简单数据类型(称为原始类型): Undefined, Null, Boolean, Numb ...

  3. 《Design by Contract for Embedded Software》 翻译

    原文: Design by Contract for Embedded Software (state-machine.com) Design by Contract is the single mo ...

  4. Git 实战代码分支管理 | Git Flow 策略

    ​ 简介 在团队协作开发中,版本管理工具尤为重要,它可以帮助团队很好地进行代码的共享.回滚等操作,比较流行的版本管理工具有:CVS.SVN.Git.Git作为分布式版本管理工具,优势十分明显,它可以为 ...

  5. php7怎么安装memcache扩展

    php7安装memcache扩展 1.下载文件,解压缩 memcache windows php7下载地址: https://github.com/nono303/PHP7-memcache-dll ...

  6. Go 的windows安装与环境配置

    1.请前往go的官网下载安装包:https://golang.org/dl/ 安装你如果C盘够大比较土豪就一路next即可,在这里小编穷就安装到了D:\Program Files\Go 2.环境变量配 ...

  7. day16 异常处理生成器

    day16 异常处理生成器 今日内容概要 异常处理 异常处理实战应用 生成器对象 生成器对象实现range方法 生成器表达式 今日内容详细 一.异常处理 1.异常常见类型 SyntaxError语法错 ...

  8. Linux 中的文件简单说明

    Linux 中的文件简单说明 作者:Grey 原文地址: 博客园:Linux 中的文件简单说明 CSDN:Linux 中的文件简单说明 说明 本文基于 CentOS 7 根目录(/)下文件夹主要作用 ...

  9. 【Java SE进阶】Day02 Collection、Iterator、泛型

    一.Collection集合 1.概述 数组存元素,集合存对象(类型可以不一样) 2.框架分类 单列:Collection List ArrayList LinkedList Set HashSet ...

  10. 【每日一题】【栈和队列、双端队列】20. 有效的括号/NC52 有效括号序列-211127/220126

    给定一个只包括 '(',')','{','}','[',']' 的字符串 s ,判断字符串是否有效. 有效字符串需满足: 左括号必须用相同类型的右括号闭合.左括号必须以正确的顺序闭合. 来源:力扣(L ...