CF1167F Scalar Queries (线段树/树状数组)
题意
题解
对于[l,r]中的一个数,不论[l,r]有多大,只有比它小的数可以影响到它的排名,那么就可以把ai从小到大排序,一个一个加入线段树中,线段树中下表为 i 的是ai(原来的位置,不是排序后的)分别为最右端和最左端时的排名总和(设为suml[i]、sumr[i]),ai的总贡献就是 ai * (suml[i-1] * (n-i+1) + sumr[i] * i)
当循环到一个点 i 时,他左边的任意一个点 j 会为 l <= j 且 r >= i 的区间中 i 的排名贡献1,右边的任意一个点 k 会为 l <= i 且 r >= k 的区间中 i 的排名贡献1,他自己也有贡献
所以加入一个点 i 时,就要把 i~n 的 suml 都加上 i ,把 1~i 的 sumr 都加上 n-i+1。
CODE
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<algorithm>
#define MAXN 500005
#define MAXM 1000005
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x)&(x))
//#define int LL
//#pragma GCC optimize(2)
using namespace std;
inline LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-')f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 + (s - '0');s = getchar();}
return x * f;
}
const int jzm = 1000000007;
int n,m,i,j,s,o,k;
struct it{
int nm,id;
}a[MAXN];
bool cmp(it a,it b) {return a.nm < b.nm;}
int cl[MAXN],cr[MAXN];
void addt(int *c,int x,int y) {
while(x <= n) {
c[x] = (c[x] +0ll+jzm + y) % jzm;
x += lowbit(x);
}return ;
}
int sum(int *c,int x) {
int as = 0;
while(x > 0) {
as = (as +0ll+jzm + c[x]) % jzm;
x -= lowbit(x);
}
return as;
}
int main() {
n = read();
for(int i = 1;i <= n;i ++) {
a[i].nm = read();a[i].id = i;
}
sort(a + 1,a + 1 + n,cmp);
int ans = 0;
for(int i = 1;i <= n;i ++) {
addt(cl,a[i].id,a[i].id);
addt(cr,1,n - a[i].id + 1);
addt(cr,a[i].id+1,a[i].id - n - 1);
ans = (ans +0ll+jzm +(sum(cl,a[i].id-1) *1ll* (n - a[i].id + 1) % jzm +0ll+ sum(cr,a[i].id) *1ll* a[i].id % jzm) % jzm *1ll* a[i].nm % jzm) % jzm;
// printf("ans: %d\n",ans);
}
printf("%d\n",ans);
return 0;
}
CF1167F Scalar Queries (线段树/树状数组)的更多相关文章
- Codeforces 1167 F Scalar Queries 计算贡献+树状数组
题意 给一个数列\(a\),定义\(f(l,r)\)为\(b_1, b_2, \dots, b_{r - l + 1}\),\(b_i = a_{l - 1 + i}\),将\(b\)排序,\(f(l ...
- CodeForces -163E :e-Government (AC自动机+DFS序+树状数组)
The best programmers of Embezzland compete to develop a part of the project called "e-Governmen ...
- codeforces#1167F. Scalar Queries(树状数组+求贡献)
题目链接: https://codeforces.com/contest/1167/problem/F 题意: 给出长度为$n$的数组,初始每个元素为$a_i$ 定义:$f(l, r)$为,重排$l$ ...
- Turing Tree_线段树&树状数组
Problem Description After inventing Turing Tree, 3xian always felt boring when solving problems abou ...
- HDU 3874 Necklace (树状数组 | 线段树 的离线处理)
Necklace Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total S ...
- HDU 4031 Attack(线段树/树状数组区间更新单点查询+暴力)
Attack Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others) Total Sub ...
- HDU 4605 Magic Ball Game(可持续化线段树,树状数组,离散化)
Magic Ball Game Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- Super Mario 树状数组离线 || 线段树
Super Mario Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- 2019南昌网络赛 I. Yukino With Subinterval 树状数组套线段树
I. Yukino With Subinterval 题目链接: Problem Descripe Yukino has an array \(a_1, a_2 \cdots a_n\). As a ...
随机推荐
- ExtJS 布局-VBox布局(VBox layout)
更新记录: 2022年6月11日 优化文章结构. 2022年6月9日 发布. 2022年6月1日 开始. 1.说明 vbox布局类似auto布局,将子组件一个接一个垂直向下放置,既可以在水平方向也可以 ...
- [pwn基础]动态链接原理
目录 [pwn基础]动态链接原理 动态链接概念 动态链接调用so例子 GOT(全局偏移表) got表劫持小实验 PLT(延迟绑定) PLT概念 延迟绑定(PLT表) 实战学习 [pwn基础]动态链接原 ...
- Pytorch中的Sort的使用
>>> a = torch.randn(3,3)>>> atensor([[ 0.5805, 0.1940, 1.2591], [-0.0863, 0.5350, ...
- 原生实现.NET5.0+ 自定义日志
一.定义一个静态类 声明一个 ReaderWriterLockSlim 对象 用于并发控制 1 /// <summary> 2 /// IO锁 3 /// </summary> ...
- 我用Python做了一个咖啡馆数据分析
在做案例前,我还想回答大家一个疑问,就是excel做数据分析可以实现Python一样的效果,那用Python的意义在哪呢? 经过这段时间学习理解,我的回答是: (https://jq.qq.com/? ...
- 准备java编程软件与第一个java程序
我们要用的java的编程软件叫做:eclipse windows上安装eclipse 首先需要一个浏览器 要下载eclipse最简单的方式就是在官网下载 官网:https://www.eclipse ...
- 一个月后,我们又从 MySQL 双主切换成了主 - 从!
这是悟空的第 157 篇原创文章 官网:www.passjava.cn 你好,我是悟空. 一.遇到的坑 一个月前,我们在测试环境部署了一套 MySQL 高可用架构,也就是 MySQL 双主 + Kee ...
- 二分法求最长子序列长度(STL)(nlogn)
声明: 正如标题所说,只是求长度,应对题目要求,请自行判断,用错代码概不负责! 本蒟蒻的代码可能有错,有错误还请各位dalao请指出 运用了upper_bound()和lower_bound()函数 ...
- 洛谷 P5627 题解
题意 Link 求 \[\sum_{i=1}^{2^n}\log_2\left(\prod_{j=1}^i\operatorname{lowbit}(j)\right) \] \(n\le 2^{64 ...
- Bika LIMS 开源LIMS集—— SENAITE的使用(用户、角色、部门)
设置 添加实验室人员,系统用户 因为创建实验室时必须选择实验室经理/主任/负责人,因此需要先创建实验室经理人员. 创建人员时输入人员姓名,可上传签名图片. 创建实验室部门 输入实验室名称.代码,选择实 ...