论文信息

论文标题:Self-Attention Graph Pooling
论文作者:Junhyun Lee, Inyeop Lee, Jaewoo Kang
论文来源:2019, ICML
论文地址:download 
论文代码:download

1 Introduction

  图池化三种类型:

    • Topology based pooling;
    • Hierarchical pooling;(使用所有从 GNN 获得的节点表示)
    • Hierarchical pooling;

  关于 Hierarchical pooling 聚类分配矩阵:

    $\begin{array}{j}S^{(l)}=\operatorname{softmax}\left(\mathrm{GNN}_{l}\left(A^{(l)}, X^{(l)}\right)\right) \\A^{(l+1)}=S^{(l) \top} A^{(l)} S^{(l)}\end{array}  \quad\quad\quad\quad(1)$

  gPool 取得了与 DiffPool 相当的性能,gPool 需要的存储复杂度为 $\mathcal{O}(|V|+|E|)$,而 DiffPool 需要 $\mathcal{O}\left(k|V|^{2}\right)$,其中 $V$、$E$ 和 $k$ 分别表示顶点、边和池化率。gPool 使用一个可学习的向量 $p$ 来计算投影分数,然后使用这些分数来选择排名靠前的节点。投影得分由 $p$ 与所有节点的特征之间的点积得到。这些分数表示可以保留的节点的信息量。下面的公式大致描述了 gPool 中的池化过程:

    $\begin{array}{l} y=X^{(l)} \mathbf{p}^{(l)} /\left\|\mathbf{p}^{(l)}\right\|\\ \mathrm{idx}=\operatorname{top}-\operatorname{rank}(y,\lceil k N\rceil)\\A^{(l+1)}=A_{\mathrm{idx}, \mathrm{idx}}^{(l)}\end{array} \quad\quad\quad\quad(2)$

2 Method

  框架如下:

   

2.1. Self-Attention Graph Pooling

Self-attention mask

  本文使用图卷积来获得自注意分数:

    $Z=\sigma\left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} X \Theta_{a t t}\right)  \quad\quad\quad\quad(3)$

  其中,自注意得分 $Z \in \mathbb{R}^{N \times 1}$、邻接矩阵 $\tilde{A} \in \mathbb{R}^{N \times N}$、注意力参数矩阵 $\Theta_{a t t} \in \mathbb{R}^{F \times 1}$、特征矩阵 $X \in \mathbb{R}^{N \times F}$、度矩阵 $\tilde{D} \in \mathbb{R}^{N \times N}$。

  这里考虑节点选择方法,即使输入不同大小和结构的图,也会保留输入图的部分节点。

    $\begin{array}{l} \mathrm{idx}=\operatorname{top}-\operatorname{rank}(Z,\lceil k N\rceil)\\Z_{\text {mask }}=Z_{\mathrm{idx}}\end{array}   \quad\quad\quad\quad(4)$

  基于自注意得分 $Z$ ,选择保留前 $ \lceil k N\rceil$ 个节点,其中 $k \in(0,1]$ 代表着池化率(pooling ratio),$Z_{\text{mask}}$ 是 feature attention mask。。

Graph pooling

  接着获得新特征矩阵和邻接矩阵:

     $\begin{array}{l} X^{\prime}=X_{\mathrm{idx},:}\\X_{\text {out }}=X^{\prime} \odot Z_{\text {mask }}\\A_{\text {out }}=A_{\mathrm{idx}, \mathrm{idx}}\end{array} \quad\quad\quad\quad(5)$

  其中,$\odot$  is the broadcasted elementwise product。

Variation of SAGPool

  利用图特征矩阵 $X$ 和拓扑结构 $A$ ,计算注意力得分矩阵 $Z$ 的通用形式:

    $Z=\sigma(\operatorname{GNN}(X, A))  \quad\quad\quad\quad(6)$

  比如 $\text { SAGPool }_{\text {augmentation }}$,加入二跳邻居信息:

    $Z=\sigma\left(\operatorname{GNN}\left(X, A+A^{2}\right)\right)   \quad\quad\quad\quad(7)$

  比如 $\text { SAGPool }_{\text {serial }}$,堆叠多层 GNN:

    $Z=\sigma\left(\mathrm{GNN}_{2}\left(\sigma\left(\mathrm{GNN}_{1}(X, A)\right), A\right)\right)  \quad\quad\quad\quad(8)$

  比如 $\text { SAGPool }_{\text {parallel }}$,平均多重注意力分数。$M$ 个 GNN 的平均注意得分如下:

    $Z=\frac{1}{M} \sum_{m} \sigma\left(\mathrm{GNN}_{m}(X, A)\right) \quad\quad\quad\quad(9)$

2.2 Model Architecture

  本节用来验证模块的有效性。

Convolution layer

  图卷积 GCN:

    $h^{(l+1)}=\sigma\left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} h^{(l)} \Theta\right)  \quad\quad\quad\quad(10)$

  与 $\text{Eq.3}$ 不同的是,$\Theta \in \mathbb{R}^{F \times F^{\prime}}$ 。

Readout layer

  根据 JK-net architecture 的思想:

    $s=\frac{1}{N} \sum_{i=1}^{N} x_{i} \| \max _{i=1}^{N} x_{i}   \quad\quad\quad\quad(11)$

  其中:

    • $N$ 代表着节点的个数;
    • $x_{i}$ 代表着第 $i$ 个节点的特征向量;

Global pooling architecture & Hierarchical pooling architecture

  对比如下:

  

3 Experiments

数据集

  

基线实验

  

SAGPool 的变体

  

4 Conclusion

  本文提出了一种基于自注意的SAGPool图池化方法。我们的方法具有以下特征:分层池、同时考虑节点特征和图拓扑、合理的复杂度和端到端表示学习。SAGPool使用一致数量的参数,而不管输入图的大小如何。我们工作的扩展可能包括使用可学习的池化比率来获得每个图的最优聚类大小,并研究每个池化层中多个注意掩模的影响,其中最终的表示可以通过聚合不同的层次表示来获得。

论文解读(SAGPool)《Self-Attention Graph Pooling》的更多相关文章

  1. 论文解读《Deep Attention-guided Graph Clustering with Dual Self-supervision》

    论文信息 论文标题:Deep Attention-guided Graph Clustering with Dual Self-supervision论文作者:Zhihao Peng, Hui Liu ...

  2. 论文解读GALA《Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning》

    论文信息 Title:<Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learn ...

  3. 论文解读(ChebyGIN)《Understanding Attention and Generalization in Graph Neural Networks》

    论文信息 论文标题:Understanding Attention and Generalization in Graph Neural Networks论文作者:Boris Knyazev, Gra ...

  4. 论文解读(GraphMAE)《GraphMAE: Self-Supervised Masked Graph Autoencoders》

    论文信息 论文标题:GraphMAE: Self-Supervised Masked Graph Autoencoders论文作者:Zhenyu Hou, Xiao Liu, Yukuo Cen, Y ...

  5. 论文解读(KP-GNN)《How Powerful are K-hop Message Passing Graph Neural Networks》

    论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, ...

  6. 论文解读(SR-GNN)《Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data》

    论文信息 论文标题:Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data论文作者:Qi Zhu, ...

  7. 论文解读(LG2AR)《Learning Graph Augmentations to Learn Graph Representations》

    论文信息 论文标题:Learning Graph Augmentations to Learn Graph Representations论文作者:Kaveh Hassani, Amir Hosein ...

  8. 论文解读(GCC)《Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering》

    论文信息 论文标题:Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering论文作者:Chaki ...

  9. 论文解读(AGC)《Attributed Graph Clustering via Adaptive Graph Convolution》

    论文信息 论文标题:Attributed Graph Clustering via Adaptive Graph Convolution论文作者:Xiaotong Zhang, Han Liu, Qi ...

随机推荐

  1. Java 中 LinkedHashMap 和 PriorityQueue 的区别是 什么?

    PriorityQueue 保证最高或者最低优先级的的元素总是在队列头部,但是 LinkedHashMap 维持的顺序是元素插入的顺序.当遍历一个 PriorityQueue 时,没有任何顺序保证,但 ...

  2. linux java7升级到java8

    转自:https://blog.csdn.net/u010199866/article/details/81744382 linux java7升级到java8   版权 1.第一步先卸载所有老的jd ...

  3. 学习Solr(二)

    一.Solr概述 1.什么是Solr Solr 是Apache下的一个顶级开源项目,采用Java开发,它是基于Lucene的全文搜索服务器.Solr提供了比Lucene更为丰富的查询语言,同时实现了可 ...

  4. 学习 Haproxy (六)

    HAProxy HAProxy是免费 高效 可靠的高可用及负载均衡解决方案,该软件非常适合于处理高负载站点的七层数据请求,HAProxy的工作模式使其可以非常容易且安全地集成到我们现有的站点架构中.使 ...

  5. 数据库学习之"清理表内所有数据"

    今天在写定时任务的时候表内的数据都出现了问题,所以用了 1 truncate table 表名 来清空表内的数据

  6. 用vue开发一个猫眼电影web app

    前言:之前一直在学习原生的javascript,但是无奈功力太浅,学了很长时候也只能写一些简单的小demo,知道遇见了vue,一切都变了,他的双向绑定和组件化思想让我迅速的爱上了他,可是光学不练是没有 ...

  7. Day05 - Flex 实现可伸缩的图片墙 中文指南

    Day05 - Flex 实现可伸缩的图片墙 中文指南 作者:liyuechun 简介:JavaScript30 是 Wes Bos 推出的一个 30 天挑战.项目免费提供了 30 个视频教程.30 ...

  8. canvas小游戏——flappy bird

    前言 如果说学编程就是学逻辑的话,那锻炼逻辑能力的最好方法就莫过于写游戏了.最近看了一位大神的fly bird小游戏,感觉很有帮助.于是为了寻求进一步的提高,我花了两天时间自己写了一个canvas版本 ...

  9. 讲清楚之 javascript 参数传值

    讲清楚之 javascript 参数传值 参数传值是指函数调用时,给函数传递配置或运行参数的行为,包括通过call.apply 进行传值. 在实际开发中,我们总结javascript参数传值分为基本数 ...

  10. golang开发:go并发的建议

    这个是前段时间看到Go语言的贡献者与布道师 Dave Cheney对Go并发的建议或者叫使用的陷阱(不是我自己的建议),结合自己最近几年对gorotine的使用,再回头看这几条建议,真的会茅塞顿开,觉 ...