论文解读(SAGPool)《Self-Attention Graph Pooling》
论文信息
论文标题:Self-Attention Graph Pooling
论文作者:Junhyun Lee, Inyeop Lee, Jaewoo Kang
论文来源:2019, ICML
论文地址:download
论文代码:download
1 Introduction
图池化三种类型:
- Topology based pooling;
- Hierarchical pooling;(使用所有从 GNN 获得的节点表示)
- Hierarchical pooling;
关于 Hierarchical pooling 聚类分配矩阵:
$\begin{array}{j}S^{(l)}=\operatorname{softmax}\left(\mathrm{GNN}_{l}\left(A^{(l)}, X^{(l)}\right)\right) \\A^{(l+1)}=S^{(l) \top} A^{(l)} S^{(l)}\end{array} \quad\quad\quad\quad(1)$
gPool 取得了与 DiffPool 相当的性能,gPool 需要的存储复杂度为 $\mathcal{O}(|V|+|E|)$,而 DiffPool 需要 $\mathcal{O}\left(k|V|^{2}\right)$,其中 $V$、$E$ 和 $k$ 分别表示顶点、边和池化率。gPool 使用一个可学习的向量 $p$ 来计算投影分数,然后使用这些分数来选择排名靠前的节点。投影得分由 $p$ 与所有节点的特征之间的点积得到。这些分数表示可以保留的节点的信息量。下面的公式大致描述了 gPool 中的池化过程:
$\begin{array}{l} y=X^{(l)} \mathbf{p}^{(l)} /\left\|\mathbf{p}^{(l)}\right\|\\ \mathrm{idx}=\operatorname{top}-\operatorname{rank}(y,\lceil k N\rceil)\\A^{(l+1)}=A_{\mathrm{idx}, \mathrm{idx}}^{(l)}\end{array} \quad\quad\quad\quad(2)$
2 Method
框架如下:
2.1. Self-Attention Graph Pooling
Self-attention mask
本文使用图卷积来获得自注意分数:
$Z=\sigma\left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} X \Theta_{a t t}\right) \quad\quad\quad\quad(3)$
其中,自注意得分 $Z \in \mathbb{R}^{N \times 1}$、邻接矩阵 $\tilde{A} \in \mathbb{R}^{N \times N}$、注意力参数矩阵 $\Theta_{a t t} \in \mathbb{R}^{F \times 1}$、特征矩阵 $X \in \mathbb{R}^{N \times F}$、度矩阵 $\tilde{D} \in \mathbb{R}^{N \times N}$。
这里考虑节点选择方法,即使输入不同大小和结构的图,也会保留输入图的部分节点。
$\begin{array}{l} \mathrm{idx}=\operatorname{top}-\operatorname{rank}(Z,\lceil k N\rceil)\\Z_{\text {mask }}=Z_{\mathrm{idx}}\end{array} \quad\quad\quad\quad(4)$
基于自注意得分 $Z$ ,选择保留前 $ \lceil k N\rceil$ 个节点,其中 $k \in(0,1]$ 代表着池化率(pooling ratio),$Z_{\text{mask}}$ 是 feature attention mask。。
Graph pooling
接着获得新特征矩阵和邻接矩阵:
$\begin{array}{l} X^{\prime}=X_{\mathrm{idx},:}\\X_{\text {out }}=X^{\prime} \odot Z_{\text {mask }}\\A_{\text {out }}=A_{\mathrm{idx}, \mathrm{idx}}\end{array} \quad\quad\quad\quad(5)$
其中,$\odot$ is the broadcasted elementwise product。
Variation of SAGPool
$Z=\sigma(\operatorname{GNN}(X, A)) \quad\quad\quad\quad(6)$
$Z=\sigma\left(\operatorname{GNN}\left(X, A+A^{2}\right)\right) \quad\quad\quad\quad(7)$
$Z=\sigma\left(\mathrm{GNN}_{2}\left(\sigma\left(\mathrm{GNN}_{1}(X, A)\right), A\right)\right) \quad\quad\quad\quad(8)$
$Z=\frac{1}{M} \sum_{m} \sigma\left(\mathrm{GNN}_{m}(X, A)\right) \quad\quad\quad\quad(9)$
2.2 Model Architecture
本节用来验证模块的有效性。
Convolution layer
图卷积 GCN:
$h^{(l+1)}=\sigma\left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} h^{(l)} \Theta\right) \quad\quad\quad\quad(10)$
与 $\text{Eq.3}$ 不同的是,$\Theta \in \mathbb{R}^{F \times F^{\prime}}$ 。
Readout layer
根据 JK-net architecture 的思想:
$s=\frac{1}{N} \sum_{i=1}^{N} x_{i} \| \max _{i=1}^{N} x_{i} \quad\quad\quad\quad(11)$
其中:
- $N$ 代表着节点的个数;
- $x_{i}$ 代表着第 $i$ 个节点的特征向量;
Global pooling architecture & Hierarchical pooling architecture
对比如下:
3 Experiments
数据集
基线实验
SAGPool 的变体
4 Conclusion
本文提出了一种基于自注意的SAGPool图池化方法。我们的方法具有以下特征:分层池、同时考虑节点特征和图拓扑、合理的复杂度和端到端表示学习。SAGPool使用一致数量的参数,而不管输入图的大小如何。我们工作的扩展可能包括使用可学习的池化比率来获得每个图的最优聚类大小,并研究每个池化层中多个注意掩模的影响,其中最终的表示可以通过聚合不同的层次表示来获得。
论文解读(SAGPool)《Self-Attention Graph Pooling》的更多相关文章
- 论文解读《Deep Attention-guided Graph Clustering with Dual Self-supervision》
论文信息 论文标题:Deep Attention-guided Graph Clustering with Dual Self-supervision论文作者:Zhihao Peng, Hui Liu ...
- 论文解读GALA《Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning》
论文信息 Title:<Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learn ...
- 论文解读(ChebyGIN)《Understanding Attention and Generalization in Graph Neural Networks》
论文信息 论文标题:Understanding Attention and Generalization in Graph Neural Networks论文作者:Boris Knyazev, Gra ...
- 论文解读(GraphMAE)《GraphMAE: Self-Supervised Masked Graph Autoencoders》
论文信息 论文标题:GraphMAE: Self-Supervised Masked Graph Autoencoders论文作者:Zhenyu Hou, Xiao Liu, Yukuo Cen, Y ...
- 论文解读(KP-GNN)《How Powerful are K-hop Message Passing Graph Neural Networks》
论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, ...
- 论文解读(SR-GNN)《Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data》
论文信息 论文标题:Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data论文作者:Qi Zhu, ...
- 论文解读(LG2AR)《Learning Graph Augmentations to Learn Graph Representations》
论文信息 论文标题:Learning Graph Augmentations to Learn Graph Representations论文作者:Kaveh Hassani, Amir Hosein ...
- 论文解读(GCC)《Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering》
论文信息 论文标题:Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering论文作者:Chaki ...
- 论文解读(AGC)《Attributed Graph Clustering via Adaptive Graph Convolution》
论文信息 论文标题:Attributed Graph Clustering via Adaptive Graph Convolution论文作者:Xiaotong Zhang, Han Liu, Qi ...
随机推荐
- 什么是可重入锁(ReentrantLock)?
举例来说明锁的可重入性 public class UnReentrant{ Lock lock = new Lock(); public void outer(){ lock.lock(); inne ...
- 什么是 Aspect?
aspect 由 pointcount 和 advice 组成, 它既包含了横切逻辑的定义, 也包 括了连接点的定义. Spring AOP 就是负责实施切面的框架, 它将切面所定义的横 切逻辑编织到 ...
- Javascript Range对象的学习
Range对象有几个特别难理解的属性,这里学习总结下 Range.startOffset:返回一个表示 Range 起点在 startContainer 中的位置的数字.此属性的值与Range.sta ...
- Java 面试问题列表包含的主题?
多线程,并发及线程基础 数据类型转换的基本原则 垃圾回收(GC) Java 集合框架 数组 字符串 GOF 设计模式 SOLID 抽象类与接口 Java 基础,如 equals 和 hashcode ...
- GC和GC Tuning
GC和GC Tuning GC的基础知识 什么是垃圾 C语言申请内存:malloc free C++: new delete c/C++ 手动回收内存 Java: new ? 自动内存回收,编程上简单 ...
- vue2.0开发聊天程序(八) 初步完成
项目地址 服务器源码地址:https://github.com/ermu592275254/chat-socket 网页源码地址:https://github.com/ermu592275254/ch ...
- SQList基础+ListView基本使用
今日所学: SQList基础语法 SDList下载地址 SQLite Download Page SQList安装教程SQLite的安装与基本操作 - 极客开发者-博客 ListView用法 没遇到什 ...
- Photoshop之用“色彩范围”命令抠像
1. 打开一个文件.执行"选择>色彩范围",勾选"本地化颜色族",然后在任务背景上单击取样. 2. 取好样以后点击确定,图片如下所示,执行"选择 ...
- CommonsCollection4反序列化链学习
CommonsCollection4 1.前置知识 由于cc4没有新的知识点,主要是用cc2,然后稍微cc3结合了,所以我们可以看ysoserial源码,自己尝试构造一下,把cc2通过获取Invoke ...
- python的for循环基本用法
for循环 for循环能做到的事情 while循环都可以做到 但是for循环语法更加简洁 并且在循环取值问题上更加方便 name_list = ['jason', 'tony', 'kevin', ' ...