SP2940题解
啃论文的时候论文里面的题。
题意:
- 区间加
- 询问区间前缀和之和的最值。
我们先弱化一下问题:将“区间”二字去掉。
我们思考一下一个点可能成为答案的条件。假设现在总共进行的区间加操作令整个序列加上了 \(k\),那么 \(i\) 比 \(j\) 厉害的条件就是:
\]
\]
\]
\]
注意到这里类似斜率,相当于将位置 $ i $ 看做一个点 $ (i,s_i) $ 后对整个序列建立凸壳,每次查询时在凸壳上二分。
回到原问题上,我们只需要维护出整个区间的凸壳即可。
但是维护整个区间的凸壳过于困难,考虑分块,将整个区间拆成几个散块和一堆块,对大块维护凸壳,散块直接暴力。
区间加只需要大块打标记,散块重构凸包即可。
设块长为 \(B\)。复杂度是 \(O(n\log n+m(\frac n B\log n+B)+m(\frac n B+B)\),取 \(B=\sqrt {n\log n}\) 即可得到复杂度 \(O(n\log n+m\sqrt {n\log n})\)。
但是不知道为什么取 \(B=\sqrt n\) 跑得更快。。。
#include<iostream>
#include<cctype>
#include<cmath>
typedef long long ll;
const int M=50005,B=225;
int n,m,p,L[M/B+5],R[M/B+5],id[M],pos[M];ll S[M/B+5];char X[1<<24|1],Y[1<<24|1],*p1=X,*p2=Y;
inline ll max(const ll&a,const ll&b){
return a>b?a:b;
}
struct Block{
int n,len,tag,a[B+5],id[B+5];ll s[B+5];
inline void Update(){
for(int i(1);i<=n;++i)a[i]+=tag,s[i]=s[i-1]+a[i];s[n+1]=-1e18/2;tag=0;
}
inline ll Query(){
int L(1),R(len),mid,ans(0);
while(L<=R){
mid=L+R>>1;
if(s[id[mid]]+id[mid]*tag<=s[id[mid+1]]+id[mid+1]*tag)L=mid+1,ans=mid;
else R=mid-1;
}
return s[id[ans+1]]+1ll*id[ans+1]*tag;
}
inline void Build(){
Update();len=0;
for(int i=1;i<=n;++i){
while(len>1&&(s[i]-s[id[len]])*(id[len]-id[len-1])>=(s[id[len]]-s[id[len-1]])*(i-id[len]))--len;
id[++len]=i;
}
id[len+1]=n+1;
}
}block[M/B+5];
inline void update(){
for(int i=1;(i-1)*p<n;++i)S[i]=S[i-1]+block[i].s[id[R[i]]]+1ll*id[R[i]]*block[i].tag;
}
inline void Modify(const int&l,const int&r,const int&x){
const int&q=pos[l],&p=pos[r];int i;
if(q==p){
for(i=l;i<=r;++i)block[q].a[id[i]]+=x;block[q].Update();block[q].Build();
}
else{
for(i=q+1;i<=p-1;++i)block[i].tag+=x;
for(i=l;i<=R[pos[l]];++i)block[q].a[id[i]]+=x;block[q].Update();block[q].Build();
for(i=L[pos[r]];i<=r;++i)block[p].a[id[i]]+=x;block[p].Update();block[p].Build();
}
update();
}
inline ll Query(const int&l,const int&r){
const int&q=pos[l],&p=pos[r];int i;ll ans(-1e18/2);
if(q==p){
for(i=l;i<=r;++i)ans=max(ans,S[q-1]+block[q].s[id[i]]+id[i]*block[q].tag);
}
else{
for(i=q+1;i<=p-1;++i)ans=max(ans,block[i].Query()+S[i-1]);
for(i=l;i<=R[pos[l]];++i)ans=max(ans,S[q-1]+block[q].s[id[i]]+id[i]*block[q].tag);
for(i=L[pos[r]];i<=r;++i)ans=max(ans,S[p-1]+block[p].s[id[i]]+id[i]*block[p].tag);
}
return ans;
}
inline int read(){
int n(0);bool typ(false);char s;
while(!isdigit(s=*p1++))typ|=s==45;while(n=n*10+(s&15),isdigit(s=*p1++));return typ?-n:n;
}
inline void write(ll n){
static char s[18];int top(0);if(n<0)*p2++=45,n=-n;
while(s[++top]=n%10^48,n/=10);while(*p2++=s[top--],top);
}
signed main(){
std::cin.read(X,sizeof X);
int i,x,l,r,opt;p=sqrt(n=read());for(i=1;(i-1)*p<n;++i)L[i]=(i-1)*p+1,R[i]=i*p;
for(i=1;i<=n;++i)pos[i]=(i-1)/p+1,block[pos[i]].a[id[i]=i-L[pos[i]]+1]=read();R[pos[n]]=n;
for(i=1;(i-1)*p<n;++i)block[i].n=R[i]-L[i]+1,block[i].Update(),block[i].Build();update();
m=read();while(m--)opt=read(),l=read(),r=read(),opt?write(Query(l,r)),void(*p2++=10):Modify(l,r,read());
std::cout.write(Y,p2-Y);
}
SP2940题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- java中的成员变量和局部变量的区别
成员变量: 在类体里面定义的变量叫做成员变量: 如果在变量有static关键字修饰,就叫作静态变量或类变量: 如果该变量没有static关键字修饰,就叫作非静态变量或实例变量: 局部变量: 方法内定义 ...
- NSString 类介绍及用法
1.NSString常见方法 NSString是 Objective-C 中核心处理字符串的类之一 创建常量字符串,注意使用"@"符号. NSString *astring = @ ...
- onclick="func()"和 onclick = "return func()"区别
onclick="func()" 表示只会执行 func , 但是不会传回 func 中之回传值onclick = "return func()" 则是 执行 ...
- 帆软报表(finereport)根据提供的数据求出该日期所在的季度
根据当前日期求字段中日期的季度 Oracle数据库 select T1.INDEXCODE ,T1.CREATETIME ,CASE when T1.CREATETIME = (case when t ...
- PCI Verilog IP
1 PCI IP设计 虽然PCI已经逐渐淘汰,但是还是有不少应用需要这样的接口通讯. 设计目的是为了提供基于源码的PCI IP,这样硬件就不必受限于某一个FPGA型号,也方便ASIC迁移.由 ...
- 《PHP程序员面试笔试真题解析》——新书上线
你好,是我--琉忆.很高兴可以跟你分享我的新书. 很高兴,在出版了PHP程序员面试笔试宝典后迎来了我的第二本书出版--<PHP程序员面试笔试真题解析>. 如果你是一个热爱PHP的程序员,刚 ...
- Argo workflow 案例练习和配置详细解析
参数化 - parameters hello-world-parameters.yaml文件解析 apiVersion: argoproj.io/v1alpha1 kind: Workflow met ...
- Spring Boot 自定义配置文件异常"expected single matching bean but found 2"
运行环境:Spring Boot 2.5.0, IDEA 2020.3.2 异常详细信息: Injection of resource dependencies failed; nested exce ...
- IDEA中快速排除maven中的依赖
选中该模块 点击show dependenties 切换试图 选中要排除的依赖,右击 选择Execlude,然后选择需要在哪个模块添加排除依赖 完成
- Android SugarORM(4)
Android Sugar ORM(4) Android Sugar ORM 数据库迁移 据官网描述, Sugar ORM的设计灵感来自与Rails(没用过, 咱也不知道是啥, 以后也许会学到吧)迁移 ...