[BOI2019][第K大问题][暴力剪枝]D2T1 Olympiads
题意
有\(N\)个人,现在你要从中选出\(K\)个人出来,然后让这\(K\)个人一起参加\(K\)场比赛。其中,每个人都要参加所有的比赛。
定义其中一场比赛的得分为这\(K\)个人的得分的最大值。然后定义这个队的得分为\(K\)场比赛的得分的加和。
例如,\(K=3\)时,有一支3个人的队伍,一共打3场比赛。第1个人在3场比赛中的得分分别为\((4, 5, 3)\),第2个人在3场比赛中的得分分别为 \((7, 3, 6)\), 第3个人在3场比赛中的得分分别为 \((3, 4, 5)\)。那么这个队伍的总得分就是\(7+5+6=18\)。
现在你要求出的是,总分最第\(C\)大的队伍的得分是多少。定义两个队伍不同,当且仅当存在两个两个队伍的人的编号不同。
输入格式
第一行3个整数分别表示\(N,K,C\);
接下来N行,每行K个整数,表示每个人在每场比赛中的得分。
输出格式
一行,输出得分第\(C\)大的队伍的得分。
样例
Input
5 4 4
7 0 4 9
3 0 8 4
1 1 3 7
5 1 3 4
4 2 2 9
Output
24
数据范围
1.(13 points) 1 ≤ N ≤ 500, 1 ≤ K ≤ 2, 1 ≤ C ≤ 2 000.
2.(31 points) 1 ≤ N ≤ 40, 1 ≤ K ≤ 6, 1 ≤ C ≤ 2 000.
3.(24 points) 1 ≤ N ≤ 500, 1 ≤ K ≤ 6, 1 ≤ C ≤ 2 000, 每个人的分数大小不超过10.
4.(32 points) 1 ≤ N ≤ 500, 1 ≤ K ≤ 6, 1 ≤ C ≤ 2 000.
时间限制
\(2\ sec / 30\ sec\)
思路
首先声明这是自己的方法,没有看官方题解...
首先求一个得分最大的队伍出来,怎么求呢?
就是让每一场比赛的得分都尽量大,也就是取所有人中这场比赛得分最大的那个人。然后这样子选完之后可能没有选齐K个人,那么剩余的位置就随便找人来补齐就好了。
然后仿照所有的求第k大的题目的做法,把这个队伍塞到一个大根堆(priority_queue)中去,每次都从队首取出一个当前的最大答案,然后用这个队伍进行拓展,塞入其它没有出现过的其他队伍。
如何拓展呢?
最暴力的想法是,每次都将这个队伍中的一个人换成另外一个人,然后在确定了这支新的队伍没有出现过之后,就将这支队伍也塞到优先队列中去。
如何判断之前是否重复呢?我用的是Hash,然后把Hash值塞到一个set里面去,就可以简单的判重了。
考虑一下时间复杂度:一共要取出C次,就是\(O(C)\),每次都要枚举将哪个人替换掉,也就是\(O(K)\)。还要枚举替换成哪个人,也就是\(O(N)\)。替换了之后,还要算出新的队伍的得分是多少,也就是\(O(K^2)\)的。然后还有set和priority_queue的时间复杂度,设为\(Const\)。那么总的时间复杂度就是\(O(N*K^3*C*Const)\),大概有\(216,000,000+\),好像跑不过...
考虑剪枝。考虑替换一个人的时候,只在N个人当中选出那些替换之后会使得答案变小或不变的那些人进行判重,判断没有出现过之后再选取其中的最大值进行扩展。这样子总共扩展出来的节点数就有原来的\(C*K*N\)变为了\(C*K\),优先队列和set部分的时间就变小了。然后枚举的时候,也被剪掉了不少。这样子就可以跑到0.3s~0.4s左右。
代码
实现的有点丑,但是算法还是很简单暴力的。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define MAXN 500
#define MAXK 6
#define MAXC 2000
#define MO 10000007
using namespace std;
typedef long long LL;
struct state
{
int val;LL st;
state(){};
state(int _val,LL _st):val(_val),st(_st){};
};
bool operator < (const state &A,const state &B){return A.val<B.val;}
priority_queue<state> que;
struct node
{
LL x;
node *nxt;
}nd[MAXC*MAXN*MAXK+5];
node *ncnt=&nd[0],*Adj[MO+5];
int n,k,c,tmp[MAXK+1];
int scr[MAXN+5][MAXK+1];
LL Encode(int *seq)
{
LL ret=0;
for(int i=1;i<=k;i++)
ret=1LL*ret*n+(1LL*seq[i]-1);
return ret;
}
void Decode(LL val,int *seq)
{
for(int i=k;i>=1;i--)
seq[i]=val%n+1,val/=n;
}
int GetVal(int *seq)
{
int ret=0;
for(int j=1;j<=k;j++)
{
int mxval=0;
for(int i=1;i<=k;i++)
mxval=max(mxval,scr[seq[i]][j]);
ret+=mxval;
}
return ret;
}
void Print(int *seq)
{
for(int i=1;i<=k;i++)
printf("%d ",seq[i]);
printf("\n");
}
void Insert(LL x)
{
int id=x%MO;
node *p=++ncnt;
p->x=x;
p->nxt=Adj[id];
Adj[id]=p;
}
bool Find(LL x)
{
int id=x%MO;
for(node *p=Adj[id];p!=NULL;p=p->nxt)
if(p->x==x)
return true;
return false;
}
int Solve()
{
static int tmp1[MAXK+5],tmp2[MAXK+5];
static bool sp[MAXN+5];
state fro;
for(int tmn=1;tmn<c;tmn++)
{
fro=que.top();que.pop();
Decode(fro.st,tmp1);
for(int i=1;i<=k;i++)
sp[tmp1[i]]=1;
for(int i=1;i<=k;i++)
{
LL mxst;
int mxval=-1;
for(int j=1;j<=n;j++)
if(sp[j]==false)
{
for(int p=1;p<=k;p++)
tmp2[p]=tmp1[p];
tmp2[i]=j;
int val=GetVal(tmp2);
if(val>fro.val) continue;
if(val>mxval)
{
sort(tmp2+1,tmp2+1+k);
LL st=Encode(tmp2);
if(Find(st))
continue;
mxval=val,mxst=st;
}
}
if(mxval==-1)
continue;
Insert(mxst);
Decode(mxst,tmp2);
que.push(state(mxval,mxst));
}
for(int i=1;i<=k;i++)
sp[tmp1[i]]=0;
}
return que.top().val;
}
int main()
{
freopen("olymp.in","r",stdin);
freopen("olymp.out","w",stdout);
scanf("%d %d %d",&n,&k,&c);
for(int i=1;i<=n;i++)
for(int j=1;j<=k;j++)
scanf("%d",&scr[i][j]);
for(int j=1;j<=k;j++)
{
int mxpos=-1;
for(int i=1;i<=n;i++)
if(mxpos==-1||scr[mxpos][j]<scr[i][j])
mxpos=i;
tmp[j]=mxpos;
}
sort(tmp+1,tmp+1+k);
int len=unique(tmp+1,tmp+1+k)-tmp-1;
for(int i=len+1;i<=k;i++)
for(int j=1;j<=n;j++)
{
bool Find=false;
for(int p=1;p<i&&Find==false;p++)
if(tmp[p]==j)
Find=true;
if(Find==false)
{
tmp[i]=j;
break;
}
}
sort(tmp+1,tmp+1+k);
LL ret=Encode(tmp);
Insert(ret);
que.push(state(GetVal(tmp),ret));
int ans=Solve();
printf("%d\n",ans);
return 0;
}
/*
5 4 4
7 0 4 9
3 0 8 4
1 1 3 7
5 1 3 4
4 2 2 9
*/
[BOI2019][第K大问题][暴力剪枝]D2T1 Olympiads的更多相关文章
- poj 3714 Raid【(暴力+剪枝) || (分治法+剪枝)】
题目: http://poj.org/problem?id=3714 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=27048#prob ...
- 区间第k大问题 权值线段树 hdu 5249
先说下权值线段树的概念吧 权值平均树 就是指区间维护值为这个区间内点出现次数和的线段树 用这个加权线段树 解决第k大问题就很方便了 int query(int l,int r,int rt,int k ...
- 整体二分初探 两类区间第K大问题 poj2104 & hdu5412
看到好多讲解都把整体二分和$CDQ$分治放到一起讲 不过自己目前还没学会$CDQ$分治 就单独谈谈整体二分好了 先推荐一下$XHR$的 <浅谈数据结构题的几个非经典解法> 整体二分在当中有 ...
- [NBUT 1458 Teemo]区间第k大问题,划分树
裸的区间第k大问题,划分树搞起. #pragma comment(linker, "/STACK:10240000") #include <map> #include ...
- HDU 4876 ZCC loves cards(暴力剪枝)
HDU 4876 ZCC loves cards 题目链接 题意:给定一些卡片,每一个卡片上有数字,如今选k个卡片,绕成一个环,每次能够再这个环上连续选1 - k张卡片,得到他们的异或和的数,给定一个 ...
- HDU 6382 odds (暴力 + 剪枝优化)
odds Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Subm ...
- Codeforces A. Playlist(暴力剪枝)
题目描述: Playlist time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- 暴力剪枝——cf1181C
暴力求长度为len时,以i,j为左上角的旗子的数量 不剪枝的话复杂度是n*n*m*n,必定超时 两个可以剪枝的地方:如果格子[i,j]可以作为长度为len的旗子的左上角,那么其必定不可以作为长度> ...
- HDU 5839 Special Tetrahedron (2016CCPC网络赛08) (暴力+剪枝)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5839 在一个三维坐标,给你n个点,问你有多少个四面体(4个点,6条边) 且满足至少四边相等 其余两边不 ...
随机推荐
- ApacheCN 大数据译文集 20211206 更新
PySpark 大数据分析实用指南 零.前言 一.安装 Pyspark 并设置您的开发环境 二.使用 RDD 将您的大数据带入 Spark 环境 三.Spark 笔记本的大数据清理和整理 四.将数据汇 ...
- Serverless Workflow项目
维基百科对工作流的定义是:对工作流程及其各操作步骤之间业务规则的抽象.概括描述.我们认为工作流的主要职责是: 保证结果一致性,提高容错性要求:对错误重试,捕获,执行回滚或补偿逻辑 为长时间运行的流程维 ...
- 《手把手教你》系列技巧篇(六十四)-java+ selenium自动化测试 - cookie -中篇(详细教程)
1.简介 今天按照原计划宏哥要用实例来给小伙伴或童鞋们来演示一下,如何利用cookie实现跳过验证码进行登录.这个场景是自动登陆.有很多系统的登陆信息都是保存在cookie里的,因此只要往cookie ...
- 读取数据库Blob类型的文本数据
开发一个查询功能时,遇到了一个ORM的问题:数据库字段是 Blob 类型,里面实际存储的是文本数据,Java 后端代码中用字符串 String 类型去接收这个字段的数据时,报错,提示没有对应的sett ...
- HTML横向二级导航
图片素材没有发,就一个logo还有一个Nav背景图. 效果 HTML <!DOCTYPE html> <html lang="zh-cn"> <hea ...
- vi TOhtml:复制保持格式和高亮
1. 文本编辑:在vim中编辑好,复制到opera mail中就会格式错乱,比如:行前空格.缩进消失:2. 代码复制到其他地方,无法显示彩色高亮:找到了一个变通方案:使用TOhtml把vim内容转换为 ...
- JAVA! static的作用
是静态修饰符,什么叫静态修饰符呢?大家都知道,在程序中任何变量或者代码都是在编译时由系统自动分配内存来存储的,而所谓静态就是指在编译后所分配的内存会一直存在,直到程序退出内存才会释放这个空间,也就是只 ...
- jenkins插件Publish Over SSH因安全问题下架
最近用docker新搭建了一个jenkins,安装插件的时候发现publish over ssh找不到了,官方给出的解释是存在安全隐患于2022.01.12暂停分发,官方解释如下:https://ww ...
- 实现redis哨兵,模拟master故障场景
由于主从架构无法实现master和slave角色的自动切换,所以在发送master节点宕机时,redis主从复制无法实现自动的故障转移,即将slave 自动提升为新的master.因此,需要配置哨兵来 ...
- Solution -「LOCAL」过河
\(\mathcal{Description}\) 一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\).求可达的整点数. ...