本系列所有题目均为Acwing课的内容,发表博客既是为了学习总结,加深自己的印象,同时也是为了以后回过头来看时,不会感叹虚度光阴罢了,因此如果出现错误,欢迎大家能够指出错误,我会认真改正的。同时也希望文章能够让你有所收获,与君共勉!

昨天被并查集折磨了一天,今天终于可以放松点了。那么今天就主要来学习堆的操作。

这里的堆主要为大顶堆和小顶堆,他们都是以完全二叉树作为数据结构的(完全二叉树不清楚的可以自己去百度下),而完全二叉树一般用数组模拟。接下来谈谈堆能干什么,我们知道每个父节点比子节点的值要大的堆是大顶堆,那么最大值也就是堆顶喽,小顶堆同理,最小值也是堆顶,有了这样的数据结构我们就能以\(O(1)\)的时间复杂度获得最大值和最小值,而堆的主要操作分别是插入一个元素,删除一个元素,修改一个元素,获得集合中最小的元素。具体的就在下面讲吧。

模拟堆

维护一个集合,初始时集合为空,支持如下几种操作:

I x,插入一个数 x;

PM,输出当前集合中的最小值;

DM,删除当前集合中的最小值(数据保证此时的最小值唯一);

D k,删除第 k 个插入的数;

C k x,修改第 k 个插入的数,将其变为 x;

现在要进行 N 次操作,对于所有第 2 个操作,输出当前集合的最小值。

输入格式

第一行包含整数 N。

接下来 N 行,每行包含一个操作指令,操作指令为 I x,PM,DM,D k 或 C k x 中的一种。

输出格式

对于每个输出指令 PM,输出一个结果,表示当前集合中的最小值。

每个结果占一行。

数据范围

1≤N≤105

−109≤x≤109

数据保证合法。

输入样例:

8

I -10

PM

I -10

D 1

C 2 8

I 6

PM

DM

输出样例:

-10

6

算法原理

初始化

刚刚我们知道堆是用数组实现的完全二叉树h[N],除此之外要想实现堆操作,还需要定义cnt始终指向堆中最后一个结点(其实这时的cnt就是这个元素在堆中的下标)和进来的顺序m,以及表示存储x是第几个进来的数组hp[N]和存储第m个进来的数在堆h[N]中所对应的下标ph[N]。(这里mcnt在数组都是从1开始,这样初始化m=cnt=0时就要先++m,++cnt)。

差点忘了,建立一个堆就是不断下沉元素的过程。

插入一个元素

在堆中我们插入一个元素是给h[cnt] = x,同时需要记录这个元素是第几个进来的hp[cnt] = m以及这时进来的元素在堆中存储的下标也要被存储起来ph[m] = cnt,并且将这个元素上浮down(k)(因为是存储在堆最后的位置的)来寻找这个元素应该在堆中存储的位置。

cin >> x;
++cnt,++m;
h[cnt] = x;
hp[cnt] = m,ph[m] = cnt;
up(cnt);

删除任意一个元素

众所周知,数组删除可以用覆盖来代替,那么如果我们需要删除第k个数,我们通常会用最后一个数覆盖他(方便),这里的覆盖就是堆交换heap_swap(k,cnt),然后调整最后一个数到它应该到的位置,即上浮下沉一遍up(k).down(k),从树的角度就是把最后一个数看看是往上走,还是往下走。

修改结点值

修改跟删除一样h[k] = x,删除完之后就调整修改后节点的位置,即上浮下沉一遍。

获得集合里的最值

这个更简单,下标为1的结点就是堆顶h[1],就是最大值或最小值,直接输出就行。

这些操作中就有堆的核心操作,上浮和下沉,还有堆交换(比较难理解),接下来就来介绍这些核心操作,以小顶堆为例。

上浮(参数是元素在堆中的下标)

由小顶堆的性质我们可以知道,如果一个节点比他的父节点小,那么我们就需要把他上浮,那么怎么上浮呢,我们可以一直比较该节点与其父节点的大小,如果比它小,就进行堆交换,那么什么时候停止呢?当该节点比父节点要大时就满足小顶堆性质了,可以停止循环,还有一种情况就是该结点就是最小值,那么它就会到这个堆的堆顶去,即当前节点的下标为1时也要停止循环。

void up(int x){
while(x/2 || h[x/2] > h[x]){
heap_swap(x,x/2);
x >>= 1;
}
}

下沉(参数是元素在堆中的下标)

同理,如果一个结点值比他的子节点要大,他就要下沉,由于子节点有两个-左右儿子,因此需要比较与子节点的大小,如果满足条件就先堆交换在下沉,不断下沉直至到达合适的位置,当然要是不满足条件就不必下沉。

void down(int x){
int t = x;
if(2*x <= cnt && h[2*x] < h[t]) t=x*2;
if(2*x+1 <= cnt && h[2*x+1] < h[x]) t=2*x+1;
if(x!=t){
heap_swap(x,t);
down(t);
}
}

堆交换(参数是元素在堆中的下标)

对于x,y两个数,首先要知道他们当前在堆中的下标a,b然后才能heap_swap(a,b),那么怎么交换这两个数在堆中的位置呢。

首先就得要知道他们什么时候进来的hp[a],hp[b],交换这个顺序在堆中存储的下标swap(ph[hp[a]],ph[hp[b]])

然后交换他们进来的先后顺序swap(hp[a],hp[b])

最后在交换在堆中的值swap(h[a],h[b])

void heap_swap(int a,int b){
swap(ph[hp[a]],ph[hp[b]]);
swap(hp[a],hp[b]);
swap(h[a],h[b]);
}

代码实现

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1000010;
int h[N]; // 存储堆的值
int hp[N]; // 下标为a所对应的数--表示一种顺序
int ph[N]; // 第k个数所对应的下标a--指针
int cnt,m; // 最后一个数 // 交换三组:
// 1.对这两个数的下标所对应的顺序值,第几个值(顺序值)在堆中所对应的下标进行交换
// 2.先交换存储在ph中某两个相对(插入的顺序)的数所指向堆中的下标
// 3.最后交换a,b这两个位置的值
void heap_swap(int a,int b){
swap(ph[hp[a]],ph[hp[b]]);
swap(hp[a],hp[b]);
swap(h[a],h[b]);
} void down(int x){
int t = x;
if(x * 2 <= cnt && h[2*x] < h[t]) t = 2*x;
if(x * 2 + 1 <= cnt && h[2*x + 1] < h[t]) t = 2*x+1;
if(x != t){
heap_swap(x,t); // 交换x,t,与堆排序的不同,这里使用的是heap_swap,只需要提供下标,再函数内部堆下标所指向的数及进行排序
down(t);
}
} void up(int x){
while(x / 2 && h[x/2] > h[x]){ // x/2
heap_swap(x,x/2);
x >>= 1;
}
} int main()
{
int n;
cin >> n; while(n--){
string op;
int x,k;
cin >> op;
if(op == "I"){
cin >> x;
++cnt,++m;
h[cnt] = x; // cnt所对应存储在堆h中的值
ph[m] = cnt,hp[cnt] = m; // cnt是下标,m是第几个数,都从1开始
up(cnt); // 插入位置的元素上浮
}
else if(op == "D"){ // 删除:删除第k个数,那就拿最后一个数覆盖他,然后对这个数调整
cin >> k;
k = ph[k];
heap_swap(k,cnt);
cnt--;
up(k); // 不管交换后最后一个的值是大还是小,都先上浮或下浮一遍.
down(k);
}
else if(op == "C"){
cin >> k >> x;
k = ph[k]; // 找到第k数所对应的下标
h[k] = x; // 将对应的位置修改值
up(k); // 调整修改后的数的位置
down(k);
}
else if(op == "PM"){
cout << h[1] << endl;
continue;
}
else{ // "DM"删除最小值
heap_swap(1,cnt);
cnt--;
down(1); // 只能向下调整
}
}
return 0;
}

2022-11-16 Acwing每日一题的更多相关文章

  1. CISP/CISA 每日一题 16

    CISA 每日一题(答) 作业调度软件的优点: 1.作业信息仅需建立一次,减少错误发生概率: 2.可定义作业间的依赖关系,当某一项作业失败时,依赖于该作业的后续作业就不会被执行: 3.所有成功或失败的 ...

  2. CISP/CISA 每日一题 11

    CISA 每日一题(答) 一个合理建造的数据仓库应当支持下列三种基本的查询格式: 1.向上溯源和向下溯源——向上溯源是对数据进行总计:向下溯源是将数据进行细化: 2.交叉溯源——通过通用属性访问数据仓 ...

  3. 老男孩IT教育-每日一题汇总

    老男孩IT教育-每日一题汇总 第几天 第几周 日期 快速访问链接 第123天 第二十五周 2017年8月25日 出现Swap file….already exists以下错误如何解决? 第122天 2 ...

  4. [每日一题]面试官问:谈谈你对ES6的proxy的理解?

    [每日一题]面试官问:谈谈你对ES6的proxy的理解? 关注「松宝写代码」,精选好文,每日一题 作者:saucxs | songEagle 一.前言 2020.12.23 日刚立的 flag,每日一 ...

  5. 【JavaScript】【dp】Leetcode每日一题-解码方法

    [JavaScript]Leetcode每日一题-解码方法 [题目描述] 一条包含字母 A-Z 的消息通过以下映射进行了 编码 : 'A' -> 1 'B' -> 2 ... 'Z' -& ...

  6. CISP/CISA 每日一题 五

    CISA 每日一题(答) 信息系统审计师要确认系统变更程序中的: 1.变更需求应有授权.优先排序及跟踪机制: 2.日常工作手册中,明确指出紧急变更程序: 3.变更控制程序应同时为用户及项目开发组认可: ...

  7. [每日一题]ES6中为什么要使用Symbol?

    关注「松宝写代码」,精选好文,每日面试题 加入我们一起学习,day day up 作者:saucxs | songEagle 来源:原创 一.前言 2020.12.23日刚立的flag,每日一题,题目 ...

  8. 【js】Leetcode每日一题-完成所有工作的最短时间

    [js]Leetcode每日一题-完成所有工作的最短时间 [题目描述] 给你一个整数数组 jobs ,其中 jobs[i] 是完成第 i 项工作要花费的时间. 请你将这些工作分配给 k 位工人.所有工 ...

  9. 【JavaScript】Leetcode每日一题-青蛙过河

    [JavaScript]Leetcode每日一题-青蛙过河 [题目描述] 一只青蛙想要过河. 假定河流被等分为若干个单元格,并且在每一个单元格内都有可能放有一块石子(也有可能没有). 青蛙可以跳上石子 ...

  10. 【JavaScript】Leetcode每日一题-平方数之和

    [JavaScript]Leetcode每日一题-平方数之和 [题目描述] 给定一个非负整数 c ,你要判断是否存在两个整数 a 和 b,使得 a2 + b2 = c . 示例1: 输入:c = 5 ...

随机推荐

  1. Linux安装GCC编译器

    今天突然想到怎么样在Red Hat 8上练习C,安装GCC编译器,并运行出"hello world". 于是就有了以下操作 1 [root@localhost ~]# yum in ...

  2. JavaScript之数组常用API

    这篇文章主要帮助大家简单理解数组的一些常用API用法,许多小伙伴常用方法记不住?别急,看完下面的介绍您一定就会明白各个方法是如何用的了.该文章适合新手小白看,大佬可以多多指点️! 1.数组的创建以及A ...

  3. python(第四版阅读心得)(系统工具)(一)

    本章将会讲解python常用系统工具的介绍 python中大多数系统级接口都集中在两个模块: sys 和 os 但仍有部分其他标准模块也属于这个领域 如: 常见: glob   用于文件名扩展 soc ...

  4. 解决报错:axios is not defined

    好家伙,来解决报错:axios is not defined 写前端嘛,修bug,不寒颤 进入页面一片空白 来看看报错: 1.axios在安装时:npm install axios --save-de ...

  5. KingbaseES 数据库软件卸载

    关键字: KingbaseES.卸载   一.安装后检查 在安装完成后,可以通过以下几种方式进行安装正确性验证: 1. 查看安装日志,确认没有错误记录; 2. 查看开始菜单: 查看应用程序菜单中是否安 ...

  6. centos7换清华源

    一 删除其他源 cd /etc/yum.repos.d/ 二 创建源 vim CentOS-Base.repo # CentOS-Base.repo # # The mirror system use ...

  7. FileInputStream字节输入流

    FileInputStream字节输入流 编码思想:首相顶一个FileInputStream字节输入流对象,fis设置为nul,在try/catch里面放入FileInputStream字节输入流对象 ...

  8. ProxySQL监控后端节点

    ProxySQL通过Monitor模块监控后端MySQL Server的read_only值来自动调整节点所属的组.所以,在配置读.写组之前,必须先配置好监控. 首先看下Monitor库中的表: ad ...

  9. ProxySQL介绍

    介绍 ProxySQL是用C++语言开发的,一个轻量级开源软件,性能和功能满足读写中间件所需的绝大多数功能,其配置数据基于SQLite存储,目前已到v2.4.1版本. 功能方面如下: 最基本的读/写分 ...

  10. CentOS 7配置Chrony服务进行时间同步

    CentOS 7版本中使用Chrony工具实现本地时间与标准时间同步.与CentOS 6版本中的NTP服务不同,Chrony可以更快更准确地同步系统时钟,最大程度的减少时间和频率误差.Chrony包含 ...