Python数据科学手册-Pandas:累计与分组
简单累计功能
Series sum() 返回一个 统计值
DataFrame sum。默认对每列进行统计
设置axis参数,对每一行 进行统计
describe()可以计算每一列的若干常用统计值。
获取seaborn planets数据
github: https://github.com/mwaskom/seaborn-data.git
windows: 放在用户目录下(在线下载卡。超时。)
dropna()丢弃有缺失值的行。
Pandas累计方法
Aggregation | Description |
---|---|
count() | Total number of items |
first(), last() | First and last item |
mean(), median() | Mean and median |
min(), max() | Minimum and maximum |
std(), var() | Standard deviation and variance |
mad() | Mean absolute deviation |
prod() | Product of all items |
sum() | Sum of all items |
Groupy: 分割、应用和组合
split、 apply、combine
groupby()方法传递参数列名。返回值是个DataFrameGroupBy对象。
GroupBy对象。
可以看成是DataFrame的集合。
常用的操作:aggregate(累计)、filter(过滤)、transform(转换)、apply(应用)
1)按列取值
2)按组迭代,返回的每一组都是Series 或 DataFrame
3) 调用方法
累计 过滤 转换 应用
1)累计 aggregate
2) 过滤 filter
- 转换 transform
累计操作 对组内全量数据缩减的结果。 而 转换 操作 会返回一个新的全量数据
4)apply()
输入一个DataFrame 对象,f返回一个Pandas对象 或 单个数值。 组合操作会 适应返回结果类型。
设置分割的键
1)将列表、数组、Series或 索引作为分组键
2)用字典或 Series将索引 映射到 分组名称
3)任意python函数,函数映射到索引
分组案例
以十年为一个时间段。
加上s
这里 groupby 俩个值。懵逼了。
数据透视表
groupby 是探索数据内部的关联性 。
数据透视表: pivottable 是一种类似的操作方法。常见与Excel与类似的表格 应用中。
数据透视表 将每一列 数据作为输入, 输出将数据不断细分 成多个维度累计信息的 二维数据表。
是多维的GroupBy累计操作。
泰坦尼克号 乘客 数据
1)按照性别 、最终生还状态 进行分组
2)进一步 探索,不同性别与船舱 等级的生还情况。
3)上面这个是不是感觉很复杂。使用pivot_table 就会简单
一等舱的女性 生还率最高。 三等舱的生还率 最低
好好努力
4)再把年龄也加进去。 多级数据透视表
5)其他选项
Python数据科学手册-Pandas:累计与分组的更多相关文章
- Python数据科学手册-Pandas:向量化字符串操作、时间序列
向量化字符串操作 Series 和 Index对象 的str属性. 可以正确的处理缺失值 方法列表 正则表达式. Method Description match() Call re.match() ...
- Python数据科学手册-Pandas:数值运算方法
Numpy 的基本能力之一是快速对每个元素进行运算 Pandas 继承了Numpy的功能,也实现了一些高效技巧. 对于1元运算,(函数,三角函数)保留索引和列标签 对于2元运算,(加法,乘法),Pan ...
- Python数据科学手册-Pandas:层级索引
一维数据 和 二维数据 分别使用Series 和 DataFrame 对象存储. 多维数据:数据索引 超过一俩个 键. Pandas提供了Panel 和 Panel4D对象 解决三维数据和四维数据. ...
- Python数据科学手册-Pandas:数据取值与选择
Numpy数组取值 切片[:,1:5], 掩码操作arr[arr>0], 花哨的索引 arr[0, [1,5]],Pandas的操作类似 Series数据选择方法 Series对象与一维Nump ...
- Python数据科学手册-Pandas数据处理之简介
Pandas是在Numpy基础上建立的新程序库,提供了一种高效的DataFrame数据结构 本质是带行标签 和 列标签.支持相同类型数据和缺失值的 多维数组 增强版的Numpy结构化数组 行和列不在只 ...
- Python数据科学手册-Pandas:合并数据集
将不同的数据源进行合并 , 类似数据库 join merge . 工具函数 concat / append pd.concat() 简易合并 合并高维数据 默认按行合并. axis=0 ,试试 axi ...
- 100天搞定机器学习|day45-53 推荐一本豆瓣评分9.3的书:《Python数据科学手册》
<Python数据科学手册>共五章,每章介绍一到两个Python数据科学中的重点工具包.首先从IPython和Jupyter开始,它们提供了数据科学家需要的计算环境:第2章讲解能提供nda ...
- Python数据科学手册
Python数据科学手册(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1KurSdjNWiwMac3o3iLrzBg 提取码:qogy 复制这段内容后打开百度网盘手 ...
- Matplotlib 使用 - 《Python 数据科学手册》学习笔记
一.引入 import matplotlib as mpl import matplotlib.pyplot as plt 二.配置 1.画图接口 Matplotlib 有两种画图接口: (1)一个是 ...
随机推荐
- Windows下maven配置环境变量
右键 "计算机",选择 "属性",之后点击 "高级系统设置",点击"环境变量",来设置环境变量,有以下系统变量需要配置: ...
- NC14662 小咪买东西
NC14662 小咪买东西 题目 题目描述 小咪是一个土豪手办狂魔,这次他去了一家店,发现了好多好多( \(n\) 个)手办,但他是一个很怪的人,每次只想买 \(k\) 个手办,而且他要让他花的每一分 ...
- Tapdata Cloud 2.1.5来啦:新增支持Amazon RDS数据库,错误日志查询更便捷,Agent部署细节再优化
需求持续更新,优化一刻不停--Tapdata Cloud 2.1.5 来啦! 最新发布的版本中,数据连接再上新,同时新增任务报错相关信息快速查询入口,开始支持 JVM 参数自定义设置. 更 ...
- Note -「0/1 Fractional Programming」
What is that? Let us pay attention to a common problem that we often meet in daily life: There are \ ...
- Hadoop中HDFS 的相关进程以及工作流程图(详细流程图)
- CF1701A Grass Field 题解
根据题意,给定一个 \(2\times2\) 的仅包含 \(0\) 和 \(1\) 的二维数组.定义一个操作,每次可以选择一行和一列将其变成 \(0\),求最小操作次数. 思路:根据枚举可得共有 \( ...
- CF455ABoredom
题目大意: 给你一个由 \(n\) 个整数构成的序列 \(a\),玩家可以进行几个步骤,每一步他可以选择序列中的一个元素(我们把它的值定义为 \(a_k\))并删除它,此时值等于 \(a_{k + 1 ...
- 在Centos下对高并发web框架Tornado的性能进行测试
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_89 在之前的一篇文章中,我们在1g1核的惨淡硬件环境下,对 uwsgi + django 和 gunicorn+ django 的 ...
- Kubernetes的整体架构
K8s将集群中的机器划分为一个主节点和一群工作节点,在主节点上运行着集群管理相关的一组进程kube-apiserver.kube-controller-manager 和 kube-scheduler ...
- 羽夏看Linux内核——环境搭建
写在前面 此系列是本人一个字一个字码出来的,包括示例和实验截图.如有好的建议,欢迎反馈.码字不易,如果本篇文章有帮助你的,如有闲钱,可以打赏支持我的创作.如想转载,请把我的转载信息附在文章后面,并 ...