(Problem 21)Amicable numbers
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a
b, then a and b are an amicable pair and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
d(n)定义为n 的所有真因子(小于 n 且能整除 n 的整数)之和。 如果 d(a) = b 并且 d(b) = a, 且 a
b, 那么 a 和 b 就是一对相亲数(amicable pair),并且 a 和 b 都叫做亲和数(amicable number)。
例如220的真因子是 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 和 110; 因此 d(220) = 284. 284的真因子是1, 2, 4, 71 和142; 所以d(284) = 220.
计算10000以下所有亲和数之和。
// (Problem 21)Amicable numbers
// Completed on Wed, 24 Jul 2013, 06:07
// Language: C
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h> int FactorSum(int n) //计算n的所有小于n的因素和
{
int i;
int sum=;
for(i=; i<=n/; i++)
{
if(n%i==)
sum+=i;
}
return sum;
} int main()
{
int t,i=;
int sum=;
while(i<)
{
t=FactorSum(i);
if(t!=i && FactorSum(t)==i)
sum+=i;
i++;
}
printf("%d\n",sum);
return ;
}
|
Answer:
|
31626 |
(Problem 21)Amicable numbers的更多相关文章
- (Problem 42)Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
- (Problem 74)Digit factorial chains
The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...
- (Problem 28)Number spiral diagonals
Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is forme ...
- (Problem 70)Totient permutation
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...
- (Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...
- (Problem 72)Counting fractions
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 49)Prime permutations
The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...
- (Problem 47)Distinct primes factors
The first two consecutive numbers to have two distinct prime factors are: 14 = 2 7 15 = 3 5 The fi ...
- (Problem 36)Double-base palindromes
The decimal number, 585 = 10010010012(binary), is palindromic in both bases. Find the sum of all num ...
随机推荐
- 大概看了一天python request源码。写下python requests库发送 get,post请求大概过程。
python requests库发送请求时,比如get请求,大概过程. 一.发起get请求过程:调用requests.get(url,**kwargs)-->request('get', url ...
- 【转】context和getApplicationContext()介绍
在android中常常会遇到与context有关的内容,大多都是作为参数在传递,但是它的作用究竟是什么呢 先说它的用法,举个例子 在语句 AlertDialog.Builder builder = n ...
- jQuery json数据处理
一种是使用jQuery的ajax函数 另一种是使用getJSON函数 使用ajax函数的时候 对于返回值类型dataType 亲自指定为json格式 就无需自己手动处理格式 $.ajax({ url ...
- DB2 权限控制
http://blog.csdn.net/liujinwei2005/article/details/8606983 http://www.ibm.com/developerworks/cn/data ...
- zip文件压缩(转)
zip文件结构 上面中的每一行都是一个条目,zip文件就是由一个或者多个条目组成. 条目在Java中对应ZipEntry类 创建zip压缩文件 ...
- Sublime Text 2 - There are no packages available for installation
解决Sublime Text 2 package Control 无法安装插件的问题 错误提示 here are no packages available for installation 问题解决 ...
- HDU 2152 Fruit
系数为1的母函数…… #include <cstdio> #include <cstring> using namespace std; int n,m,size[105][2 ...
- Andriod之Activity
eclipse还原默认的面板设计:Window > Reset Perspective> OK1\ 1.多个Activity之间的关系: 2.Intent的基本作用: 3.在一个Activ ...
- ASP.NET上传文件的三种基本方法
ASP.NET依托.net framework类库,封装了大量的功能,使得上传文件非常简单,主要有以下三种基本方法. 方法一:用Web控件FileUpload,上传到网站根目录. Test.aspx关 ...
- [置顶] P2P之我见,关于打洞的学问-------开篇
最近忙项目,有点累,无暇顾急博客,4月份本来想写写流媒体的文章,结果回家休了两个月回深圳后,接了P2P的项目,那就开始P2P吧. P2P起源于美国大学生Shawn Fanning 写的一个分享软件Na ...