(Problem 21)Amicable numbers
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a
b, then a and b are an amicable pair and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
d(n)定义为n 的所有真因子(小于 n 且能整除 n 的整数)之和。 如果 d(a) = b 并且 d(b) = a, 且 a
b, 那么 a 和 b 就是一对相亲数(amicable pair),并且 a 和 b 都叫做亲和数(amicable number)。
例如220的真因子是 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 和 110; 因此 d(220) = 284. 284的真因子是1, 2, 4, 71 和142; 所以d(284) = 220.
计算10000以下所有亲和数之和。
// (Problem 21)Amicable numbers
// Completed on Wed, 24 Jul 2013, 06:07
// Language: C
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h> int FactorSum(int n) //计算n的所有小于n的因素和
{
int i;
int sum=;
for(i=; i<=n/; i++)
{
if(n%i==)
sum+=i;
}
return sum;
} int main()
{
int t,i=;
int sum=;
while(i<)
{
t=FactorSum(i);
if(t!=i && FactorSum(t)==i)
sum+=i;
i++;
}
printf("%d\n",sum);
return ;
}
|
Answer:
|
31626 |
(Problem 21)Amicable numbers的更多相关文章
- (Problem 42)Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
- (Problem 74)Digit factorial chains
The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...
- (Problem 28)Number spiral diagonals
Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is forme ...
- (Problem 70)Totient permutation
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...
- (Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...
- (Problem 72)Counting fractions
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 49)Prime permutations
The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...
- (Problem 47)Distinct primes factors
The first two consecutive numbers to have two distinct prime factors are: 14 = 2 7 15 = 3 5 The fi ...
- (Problem 36)Double-base palindromes
The decimal number, 585 = 10010010012(binary), is palindromic in both bases. Find the sum of all num ...
随机推荐
- oracle,如何查看视图结构,获得视图中的字段名称、字段类型、字段长度等。
需要获得一个视图中的字段名称.字段类型.字段长度等信息,该如何编写sql语句.通过select * from user_views可以获得给定用户下所有的视图名称了,但是没找到如何获取视图结构的解决方 ...
- 想精度高,可以考虑用c语言中的函数gettimeofday
大家好: 在 win32 + bcb 时, 有个 GetTickCount() 返回第统启动到现在的 tick, 单位 ms.请问在 Linux + qt5 怎样实现呢? 如果用 QDateTime ...
- QTableView表格滚动条样式(QSS真是细致到家了)
环境:Qt5.3 IDE:QtCreator 效果预览: 垂直与水平滚动条样式 代码: ui->QTableView->verticalScrollBar()->setStyleSh ...
- USACO 2001 OPEN
第1题 绿组. 奶牛接力赛[relay] 题目描述 农夫约翰已经为一次赛跑选出了K(2≤K≤40)头牛组成了一支接力队.赛跑在农夫约翰所拥有的农场上进行,农场的编号为1到Ⅳf4≤Ⅳ< 800), ...
- 积跬步,聚小流------关于UML类图
UML的存在 类图是使用频率比較高的UML图,它用于描写叙述系统中所含的类以及它们之间的相互关系,帮助人们简化对系统的理解,也是系统分析和设计阶段的重要产物,也是系统编码和測试的重要类型根据. UML ...
- 【转】利用Ajax.BeginForm提交文件
Ajax.BeginForm @using (Ajax.BeginForm("YourAction", "YourController", new AjaxOp ...
- 学习:WordXML格式初步分析
Office2003以上,Word可以以XML文本格式存储,这样就可以使用外部程序创建Word文件,而不需要使用Word的对象.也能够自由的打开分析Word文件,或者发布到自己的Web页面,或者其他更 ...
- [iOS]超详细Apache服务器的配置(10.10系统)
配置目的:有一个自己专属的测试服务器 我们需要做以下事情: 1.新建一个目录,存放网页 2.修改Apache配置文件httpd.conf - 修改两个路径 - 增加一个属性 - 支持PHP脚本 3.拷 ...
- STL之map和multimap(关联容器)
map是一类关联式容器.它的特点是增加和删除节点对迭代器的影响很小,除了那个操作节点,对其他的节点都没有什么影响.自动建立Key - value的对应,对于迭代器来说,可以修改实值,而不能修改key. ...
- Java基础之编程语法(二)
1.常量: 整型:整数,4个字节. 长整型:整数,8个字节.以L结尾. 单精度浮点数:小数,4个字节.以F结尾. 双精度浮点数:小数,8个字节. 布尔:只有两个值,真(true)或假(false),1 ...