Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a b, then a and b are an amicable pair and each of a and b are called amicable numbers.

For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.

Evaluate the sum of all the amicable numbers under 10000.

d(n)定义为n 的所有真因子(小于 n 且能整除 n 的整数)之和。 如果 d(a) = b 并且 d(b) = a, 且 a  b, 那么 a 和 b 就是一对相亲数(amicable pair),并且 a 和 b 都叫做亲和数(amicable number)。

例如220的真因子是 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 和 110; 因此 d(220) = 284. 284的真因子是1, 2, 4, 71 和142; 所以d(284) = 220.

计算10000以下所有亲和数之和。

// (Problem 21)Amicable numbers
// Completed on Wed, 24 Jul 2013, 06:07
// Language: C
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h> int FactorSum(int n) //计算n的所有小于n的因素和
{
int i;
int sum=;
for(i=; i<=n/; i++)
{
if(n%i==)
sum+=i;
}
return sum;
} int main()
{
int t,i=;
int sum=;
while(i<)
{
t=FactorSum(i);
if(t!=i && FactorSum(t)==i)
sum+=i;
i++;
}
printf("%d\n",sum);
return ;
}
Answer:
31626

(Problem 21)Amicable numbers的更多相关文章

  1. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  2. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  3. (Problem 28)Number spiral diagonals

    Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is forme ...

  4. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  5. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

  6. (Problem 72)Counting fractions

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  7. (Problem 49)Prime permutations

    The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...

  8. (Problem 47)Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The fi ...

  9. (Problem 36)Double-base palindromes

    The decimal number, 585 = 10010010012(binary), is palindromic in both bases. Find the sum of all num ...

随机推荐

  1. 大概看了一天python request源码。写下python requests库发送 get,post请求大概过程。

    python requests库发送请求时,比如get请求,大概过程. 一.发起get请求过程:调用requests.get(url,**kwargs)-->request('get', url ...

  2. 【转】context和getApplicationContext()介绍

    在android中常常会遇到与context有关的内容,大多都是作为参数在传递,但是它的作用究竟是什么呢 先说它的用法,举个例子 在语句 AlertDialog.Builder builder = n ...

  3. jQuery json数据处理

    一种是使用jQuery的ajax函数  另一种是使用getJSON函数 使用ajax函数的时候 对于返回值类型dataType 亲自指定为json格式 就无需自己手动处理格式 $.ajax({ url ...

  4. DB2 权限控制

    http://blog.csdn.net/liujinwei2005/article/details/8606983 http://www.ibm.com/developerworks/cn/data ...

  5. zip文件压缩(转)

    zip文件结构            上面中的每一行都是一个条目,zip文件就是由一个或者多个条目组成.      条目在Java中对应ZipEntry类         创建zip压缩文件     ...

  6. Sublime Text 2 - There are no packages available for installation

    解决Sublime Text 2 package Control 无法安装插件的问题 错误提示 here are no packages available for installation 问题解决 ...

  7. HDU 2152 Fruit

    系数为1的母函数…… #include <cstdio> #include <cstring> using namespace std; int n,m,size[105][2 ...

  8. Andriod之Activity

    eclipse还原默认的面板设计:Window > Reset Perspective> OK1\ 1.多个Activity之间的关系: 2.Intent的基本作用: 3.在一个Activ ...

  9. ASP.NET上传文件的三种基本方法

    ASP.NET依托.net framework类库,封装了大量的功能,使得上传文件非常简单,主要有以下三种基本方法. 方法一:用Web控件FileUpload,上传到网站根目录. Test.aspx关 ...

  10. [置顶] P2P之我见,关于打洞的学问-------开篇

    最近忙项目,有点累,无暇顾急博客,4月份本来想写写流媒体的文章,结果回家休了两个月回深圳后,接了P2P的项目,那就开始P2P吧. P2P起源于美国大学生Shawn Fanning 写的一个分享软件Na ...