【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=1101

【题目大意】

  求[1,n][1,m]内gcd=k的情况

【题解】

  考虑求[1,n][1,m]里gcd=k

  等价于[1,n/k][1,m/k]里gcd=1

  考虑求[1,n][1,m]里gcd=1

  结果为sum(miu[d]*(n/d)*(m/d))

  预处理O(n^1.5)

  由于n/d只有sqrt(n)种取值,所以可以预处理出miu[]的前缀和 询问时分段求和

【代码】

#include <cstdio>
#include <algorithm>
const int N=50010;
using namespace std;
typedef long long ll;
int T,a,b,c,d,k;
int tot,p[N],miu[N],sum[N],v[N];
void mobius(int n){
int i,j;
for(miu[1]=1,i=2;i<=n;i++){
if(!v[i])p[tot++]=i,miu[i]=-1;
for(j=0;j<tot&&i*p[j]<=n;j++){
v[i*p[j]]=1;
if(i%p[j])miu[i*p[j]]=-miu[i];else break;
}
}for(i=1;i<=n;i++)sum[i]=sum[i-1]+miu[i];
}
ll cal(int n,int m){
ll t=0;
if(n>m)swap(n,m);
for(int i=1,j=0;i<=n;i=j+1)
j=min(n/(n/i),m/(m/i)),t+=(ll)(sum[j]-sum[i-1])*(n/i)*(m/i);
return t;
}
int main(){
mobius(50000);
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&a,&b,&k);
printf("%lld\n",cal(a/k,b/k));
}return 0;
}

  

BZOJ 1101 [POI2007]Zap(莫比乌斯反演)的更多相关文章

  1. BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )

    求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...

  2. 1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定 ...

  3. BZOJ1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status ...

  4. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

  5. BZOJ 1101: [POI2007]Zap

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2262  Solved: 895[Submit][Status] ...

  6. BZOJ 1101 [POI2007]Zap | 第一道莫比乌斯反(繁)演(衍)

    题目: http://www.lydsy.com/JudgeOnline/problem.php?id=1101 题解: http://www.cnblogs.com/mrha/p/8203612.h ...

  7. bzoj 1101 [POI2007]Zap——反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 #include<cstdio> #include<cstring& ...

  8. BZOJ 1101 [POI2007]Zap ——Dirichlet积

    [题目分析] Dirichlet积+莫比乌斯函数. 对于莫比乌斯函数直接筛出处理前缀和. 对于后面向下取整的部分,可以分成sqrt(n)+sqrt(m)部分分别计算 学习了一下线性筛法. 积性函数可以 ...

  9. 【题解】Zap(莫比乌斯反演)

    [题解]Zap(莫比乌斯反演) 裸题... 直接化吧 [P3455 POI2007]ZAP-Queries 所有除法默认向下取整 \[ \Sigma_{i=1}^x\Sigma_{j=1}^y[(i, ...

随机推荐

  1. 扩展VirtualBox虚拟机磁盘容量

    1. 在cmd命令行下进入VirtualBox的安装目录,使用“VBoxManage list hdds”命令,找到需要修改磁盘容量的虚拟机的img路径或UUID: VirtualBox安装目录> ...

  2. Android RelativeLayout常用属性介绍

    下面介绍一下RelativeLayout用到的一些重要的属性: 第一类:属性值为true或false android:layout_centerHrizontal 水平居中 android:layou ...

  3. inline-block代替浮动布局float:left列表布局最佳方案

    基于各位前辈的辛勤劳动,下面得出使用inline-block替换float:left;的最佳方案. html代码 <div class="list"> <ul&g ...

  4. python退格、方向键无法正常使用解决方法

    CentOS 6.5 自带的Python 2.6.6 箭头以及退格键(Backspace)可正常使用: 自定义所安装的Python 2.7.6却发现箭头以及退格键(Backspace)在使用的时候出现 ...

  5. ubuntu rc.local 无效 解决方案(转)

    为了让mysql开机启动,我将mysql命令添加到/etc/rc.local中,但怎么也运行不了.一开始认为只是/etc/rc.local的权限问题,但通过以下命令修改后,还是不起作用. sudo c ...

  6. git搭建服务器

    搭建Git服务器 在远程仓库一节中,我们讲了远程仓库实际上和本地仓库没啥不同,纯粹为了7x24小时开机并交换大家的修改. GitHub就是一个免费托管开源代码的远程仓库.但是对于某些视源代码如生命的商 ...

  7. 网易云课堂_C语言程序设计进阶_第5周:链表

    5.1可变数组 5.2链表 5.1可变数组 Resizable Array Think about a set of functions that provide a mechanism of res ...

  8. javascript数组排序---2冒泡

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. html中文乱码

    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">改成<m ...

  10. C++ - Vector 计算 均值(mean) 和 方差(variance)

    Vector 计算 均值(mean) 和 方差(variance) 本文地址: http://blog.csdn.net/caroline_wendy/article/details/24623187 ...