Acdream1084 寒假安排 求n!中v因子个数
题目链接: pid=1084">点击打开链接
寒假安排
Problem Description
寒假又快要到了,只是对于lzx来说,头疼的事又来了,由于众多的后宫都指望着能和lzx约会呢,lzx得安排好计划才行。
如果lzx的后宫团有n个人。寒假共同拥有m天,而每天仅仅能跟一位后宫MM约会。而且因为后宫数量太过庞大了。而寒假的天数太少,所以lzx在寒假里不会与一个MM约会一次以上。如今lzx想要知道:寒假安排的方案数如果写成k进制,末位会有多少个0。
Input
输入的第一行是一个整数。为数据的组数t(t<=1000)。
每组数据占一行,为3个正整数n、m和k(1<=m<=n<2^31,2<=k<2^31),意思如上文所述。
Output
Sample Input
3
10 5 10
10 1 2
10 2 8
Sample Output
1
1
0
Source
Manager
求n!中v因子个数的做法:
代码:
ll go(ll x, ll v){
ll ans = 0;
ll tmp = v;
while(x>=tmp){
ans += x/tmp;
tmp*=v;
}
return ans;
}
然后把k分解质因素。取因子中最小的数量既是0的个数。
#include<stdio.h>
#include<iostream>
#include<cstdio>
#include<queue>
#include<ctype.h>
#include<cstring>
#include<math.h>
#include<set>
#include<queue>
using namespace std;
#define ll long long
ll n, m, k;
ll Stack[1000], top, Cnt[1000];
void fenjie(){
top = 0;
memset(Cnt, 0, sizeof Cnt);
for(ll i = 2; i*i<=k; i++)if(k%i==0){
while(k%i==0)Cnt[top]++, k/=i;
Stack[top++] = i;
}
if(k>1){
Cnt[top]++;
Stack[top++] = k;
}
}
ll go(ll x, ll v){
ll ans = 0;
ll tmp = v;
while(x>=tmp){
ans += x/tmp;
tmp*=v;
}
return ans;
}
ll tmp[1000];
int main(){
int T;scanf("%d",&T);
while(T--){
cin>>n>>m>>k;
fenjie();
memset(tmp, 0, sizeof tmp);
for(ll i = 0; i < top; i++){
tmp[i] += go(n, Stack[i]);
}
for(ll i = 0; i < top; i++){
tmp[i] -= go(n-m, Stack[i]);
}
ll ans = tmp[0]/Cnt[0];
for(ll i = 1; i < top; i++)
ans = min(ans, tmp[i]/Cnt[i]);
cout<<ans<<endl;
}
return 0;
}
Acdream1084 寒假安排 求n!中v因子个数的更多相关文章
- JDOJ 1775: 求N!中0的个数
JDOJ 1775: 求N!中0的个数 JDOJ传送门 Description 求N!结果中末尾0的个数 N! = 1 * 2 * 3 ....... N Input 输入一行,N(0 < N ...
- 求bit中1的个数有几种做法
原文 求bit中1的个数有几种做法: - x & (x - 1) - Hamming weight的经典求法,基于树状累加:http://en.wikipedia.org/wiki/Hammi ...
- 51nod_1003 阶乘后面0的数量(求N!中5的个数,数论)
题意: n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720,720后面有1个0. Input 一个数N(1 <= N <= 10^9) OutPut 输出0的数 ...
- 第13届景驰-埃森哲杯广东工业大学ACM程序设计大赛-等式(求$N^2$的因子个数)
一.题目链接 https://www.nowcoder.com/acm/contest/90/F 二.题面 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言655 ...
- SPOJ - DISUBSTR 求串中子串的个数
\(height\)简单应用 #include<iostream> #include<cstdio> #include<cstring> #include<c ...
- POJ 2992 求组合数的因子个数
求C(n,k)的因子个数 C(n,k) = (n*(n-1)*...*(n-k+1))/(1*2*...*k) = p1^k1 * p2^k2 * ... * pt^kt 这里只要计算出分子中素数因子 ...
- 二进制中 1 的个数(C++ 和 Python 实现)
(说明:本博客中的题目.题目详细说明及参考代码均摘自 “何海涛<剑指Offer:名企面试官精讲典型编程题>2012年”) 题目 请实现一个函数,输入一个整数,输出该数二进制表示中 1 的个 ...
- 求n!中因子k的个数
思路: 求n的阶乘某个因子k的个数,如果n比较小,可以直接算出来,但是如果n很大,此时n!超出了数据的表示范围,这种直接求的方法肯定行不通.其实n!可以表示成统一的方式. n!=(km)*(m!)*a ...
- 快速求n的质因子(数论)
快速求n的质因子 如何尽快地求出n的质因子呢?我们这里又涉及两个好的算法了! 第一个:用于每次只能求出一个数的质因子,适用于题目中给的n的个数不是很多,但是n又特别大的 #include<std ...
随机推荐
- TComponent与String的转换(得到控件的DFM格式的描述)
现看下面这两个方法,把一个TComponent做成String,再就是把String转成TComponent function ComponentToStringProc(Component: TCo ...
- AOP概念
在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术.AOP是OOP的延续,是软件开发中的 ...
- 【hihocoder 1249 Xiongnu's Land】线性扫描
2015区域赛北京赛区的三水,当时在赛场上没做出的原因是复杂度分析不正确导致把方法想复杂了.近来复习复杂度分析,觉得不能只是笼统地看渐进复杂度(big-O),更应根据算法的伪码计算真正的以基本操作数为 ...
- Debian安装JAVA环境(转载)
Debian官方没有维护专门的Java软件包,所以不能直接用apt-get工具来安装.在Debian系统中要安装Java,有两种方式,一种是用传统方式:一种是Debian方式. 1. 传统方式 在 s ...
- STL set接口中使用结构体类型
需要在结构体中重载'<'运算符,下面是我写的一个例子: #include<iostream> #include<set> using namespace std; str ...
- Python学习入门基础教程(learning Python)--5 Python文件处理
本节主要讨论Python下的文件操作技术. 首先,要明白为何要学习或者说关系文件操作这件事?其实道理很简单,Python程序运行时,数据是存放在RAM里的,当Python程序运行结束后数据从RAM被清 ...
- Linux基本配置和管理 4 ---- Linux系统启动详解
1 系统启动的流程 BIOS -> MBR+boot code -> 执行引导程序: GRUB -> 加载内核 -> 执行init -> 运行runlevel 2 启动详 ...
- js(1)不太注意的一些小事件
确认选择 除了向用户提供信息,我们还希望从用户那里获得信息.这里就用到了confirm 消息对话框. 语法:confirm(str); 参数说明: str: 在消息对话框中要显示的文本,返回的是布尔值 ...
- IIS应用程序池自动回收问题的有效解决办法
问题:Timer不能持续执行,如果长时间没有访问,就会被IIs自动回收.造成一些定时作业无法完成. 解决方式1:改用windows服务或是winform方式 解决方式2:在Application_En ...
- apple程序生命周期
iphone程序的生命周期分析 做iphone开发首先第一件就是得知道iphone程序的生命周期,说白点就是当点击程序图标启动程序开始到退出程序整个使用运行过程中底下的代码都发生了什么,只有理解了这个 ...