Dijkstra算法 最短路径 (部分)
void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum])
{
bool s[maxnum]; // 判断是否已存入该点到S集合中
for(int i=1; i<=n; ++i)
{
dist[i]=c[v][i]; //dist[i]为节点路劲长度,c[v][i]为点与点之间的路径长度。
s[i]=0;
// 初始都未用过该点,s[i]为标志数组。
if(dist[i]==maxint)
prev[i]=0;
else
prev[i]=v;
}
dist[v] = 0;
s[v] = 1;
//依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中
//一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度
for(int i=2; i<=n; ++i)
{
int tmp = maxint;
int u = v;
// 找出当前未使用的点j的dist[j]最小值
for(int j=1; j<=n; ++j)
if((!s[j]) && dist[j]<tmp)
{
u = j; // u保存当前邻接点中距离最小的点的号码
tmp = dist[j];
}
s[u] = 1; // 表示u点已存入S集合中
// 更新dist
for(int j=1; j<=n; ++j)
if((!s[j]) && c[u][j]<maxint)
{
int newdist = dist[u] + c[u][j];
if(newdist < dist[j])
{
dist[j] = newdist;
prev[j] = u;
}
}
}
}
Dijkstra算法 最短路径 (部分)的更多相关文章
- Dijkstra算法 - 最短路径算法
2017-07-26 22:30:45 writer:pprp dijkstra算法法则:设置顶点集合S,首先将起始点加入该集合,然后根据起始点到其他顶点的路径长度, 选择路径长度最小的顶点加入到集合 ...
- Dijkstra算法——最短路径(转)
转自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算法 1.定义概览 Dijkstra(迪杰斯 ...
- 经典树与图论(最小生成树、哈夫曼树、最短路径问题---Dijkstra算法)
参考网址: https://www.jianshu.com/p/cb5af6b5096d 算法导论--最小生成树 最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树. im ...
- 邻接表实现Dijkstra算法以及DFS与BFS算法
//============================================================================ // Name : ListDijkstr ...
- 求两点之间最短路径-Dijkstra算法
Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.D ...
- ACM: HDU 3790 最短路径问题-Dijkstra算法
HDU 3790 最短路径问题 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Des ...
- python数据结构与算法——图的最短路径(Dijkstra算法)
# Dijkstra算法——通过边实现松弛 # 指定一个点到其他各顶点的路径——单源最短路径 # 初始化图参数 G = {1:{1:0, 2:1, 3:12}, 2:{2:0, 3:9, 4:3}, ...
- 最短路径问题——dijkstra算法
仅谈谈个人对dijkstra的理解,dijkstra算法是基于邻接表实现的,用于处理单源最短路径问题(顺便再提一下,处理单源最短路径问题的还有bellman算法).开辟一个结构体,其变量为边的终点和边 ...
- 最短路径—Dijkstra算法
Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Di ...
随机推荐
- C++实现Log()日志函数
转载请注明原创:http://www.cnblogs.com/StartoverX/p/4600649.html 需求:Log()函数,能够自动根据时间记录日志信息,要求不定参数类型和参数个数. 第一 ...
- 无线wifi-PJ-之在开启WPS下使用reaver
PJ简单解释: PIN码分前4和后4,先破前4只有最多一万个组合,破后4中的前3只有一千个组 合,一共就是一万一千个密码组合. 10的4次方+10的3次方=11000个密码组合. 当reaver确定前 ...
- Android 每隔3s更新一次title
MainActivity.java public class MainActivity extends Activity { private static int i=0; @Override pro ...
- Entity Framewor 学习笔记 (include + where)
如果我们想在子查询做过滤的话应该怎样写呢? IEnumerable<Product> products = db.products.Include(p => p.colors.Whe ...
- 8.2.1.3 Range Optimization
8.2.1.3 Range Optimization 范围访问方法使用一个单个的索引来检索表记录的自己,包含在一个或者索引值区间. 它可以用于一个单独的部分或者多个部分的索引,下面章节给出了一个详细的 ...
- BZOJ 3153 Sone1
题解:水水哒AAA树啦 #include<iostream> #include<cstdio> #include<cmath> #include<algori ...
- 【转】Beagleboard:BeagleBoneBlack
原文网址:http://elinux.org/Beagleboard:BeagleBoneBlack Did you know that elinux.org has Mailing Lists? P ...
- cf435C Cardiogram
C. Cardiogram time limit per test 1 second memory limit per test 256 megabytes input standard input ...
- Android输入法界面管理(打开/关闭/状态获取)
最近做一个带发表情的聊天界面,需要管理系统输入法的状态, 一.打开输入法窗口: InputMethodManager inputMethodManager = (InputMethodManager) ...
- linux 切换用户之后变成-bash-x.x$的解决方法
我们平时在linux下切换用户后命令行为什么会变成-bash-3.2$呢,我们来分析一下,这就是跟linux的机制有关联了,因为在linux下每次通过useradd创建新的用户时,都会将所有的配置文件 ...