题目链接:UVA10006

本来想直接打素数表,然后根据素数表来判断,结果一直超时,后来把素数表去掉,再在for循环中加判断才勉强过了。

Some numbers that are not prime still pass the Fermat test with every number smaller than themselves. These numbers are called Carmichael numbers.

只要按着这两个条件判断即可。

具体看代码:

#include<iostream>
#include<cmath>
#include<cstdlib>
using namespace std;
bool isPrimer(int num);
int powerMode(int,int,int);
//bool primeTable[65010];
int main()
{
// for(int i=1;i<=65010;i++)
// if(isPrimer(i))
// primeTable[i]=1; //素数标为1
// else
// primeTable[i]=0;
int number;
while(cin>>number,number!=0)
{
bool flag=0;
// not prime
if(isPrimer(number))
flag=1;
// pass the Fermat test with every
// number smaller than themselves.
//Let a be a random number between 2 and n - 1
for(int i=2;(i<number)&&!flag;i++)
if(powerMode(i,number,number)!=i)
flag=1; if(flag)
cout<<number<<" is normal."<<endl;
else
cout<<"The number "<<number<<" is a Carmichael number."<<endl;
}
return 0;
}
bool isPrimer(int number)
{
if(number<=2)
return true;
if(number%2==0)
return false;
for(int i=3;i<=ceil(sqrt(number));i++)
if(number%i==0)
return false;
return true;
}
//计算 pow(a,n)%n=a
int powerMode(int a,int n,int mode)
{
long long answer=1;
while(n)
{
if(n&1)
answer=(answer*a)%mode;
a=((long long )a*a)%mode;
n=n>>1;
}
return answer;
}

UVA10006 - Carmichael Numbers的更多相关文章

  1. UVA10006 - Carmichael Numbers(筛选构造素数表+高速幂)

    UVA10006 - Carmichael Numbers(筛选构造素数表+高速幂) 题目链接 题目大意:假设有一个合数.然后它满足随意大于1小于n的整数a, 满足a^n%n = a;这种合数叫做Ca ...

  2. Carmichael Numbers - PC110702

    欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10006.html 原创:Carm ...

  3. 【UVA - 10006 】Carmichael Numbers (快速幂+素数筛法)

    -->Carmichael Numbers  Descriptions: 题目很长,基本没用,大致题意如下 给定一个数n,n是合数且对于任意的1 < a < n都有a的n次方模n等于 ...

  4. UVa 10006 - Carmichael Numbers

    UVa 10006 - Carmichael Numbers An important topic nowadays in computer science is cryptography. Some ...

  5. UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)

      Carmichael Numbers  An important topic nowadays in computer science is cryptography. Some people e ...

  6. Uva 10006 Carmichael Numbers (快速幂)

    题意:给你一个数,让你判断是否是非素数,同时a^n%n==a (其中 a 的范围为 2~n-1) 思路:先判断是不是非素数,然后利用快速幂对每个a进行判断 代码: #include <iostr ...

  7. Carmichael Numbers (Uva No.10006) -- 快速幂运算_埃氏筛法_打表

    #include <cstdio> #include <iostream> #include <algorithm> #include <cmath> ...

  8. Carmichael Numbers (快速幂)

       当今计算机科学的一个重要的领域就是密码学.有些人甚至认为密码学是计算机科学中唯一重要的领域,没有密码学生命都没有意义. 阿尔瓦罗就是这样的一个人,它正在设计一个为西班牙杂烩菜饭加密的步骤.他在加 ...

  9. Mathematics:Pseudoprime numbers(POJ 3641)

     强伪素数 题目大意:利用费马定理找出强伪素数(就是本身是合数,但是满足费马定理的那些Carmichael Numbers) 很简单的一题,连费马小定理都不用要,不过就是要用暴力判断素数的方法先确定是 ...

随机推荐

  1. 转:jQuery事件绑定.on()简要概述及应用

    前几天在看<jquery基础教程>,看到事件委托的时候,关于live()方法讲的不是很详细,就去搜了一下关于live()和delegate()的. 然后在一处看到live()已经被移除了, ...

  2. poj 3176 Cow Bowling(区间dp)

    题目链接:http://poj.org/problem?id=3176 思路分析:基本的DP题目:将每个节点视为一个状态,记为B[i][j], 状态转移方程为 B[i][j] = A[i][j] + ...

  3. javascript使用消息框

    之前很多地方都用过alert,它的作用是弹出一个警告框,我们调用的方法是alert("输入的内容");其实更正确的写法是 window.alert("输入的内容" ...

  4. uva--11991 - Easy Problem from Rujia Liu?(sort+二分 map+vector vector)

    11991 - Easy Problem from Rujia Liu? Though Rujia Liu usually sets hard problems for contests (for e ...

  5. (记录前面算过的后面仍然会用的数减小复杂度)A - AC Me

    Description Ignatius is doing his homework now. The teacher gives him some articles and asks him to ...

  6. CentOS下安装两个或多个Tomcat7

    链接地址:http://lcbk.net/tomcat/1407.html 首先安装JDK 安装之前检查下是否已经安装了openJDK,如果已安装,建议用yum remove 卸载掉. [root@b ...

  7. java数组中的三种排序方法中的冒泡排序方法

    我记得我大学学java的时候,怎么就是搞不明白这三种排序方法,也一直不会,现在我有发过来学习下这三种方法并记录下来. 首先说说冒泡排序方法:冒泡排序方法就是把数组中的每一个元素进行比较,如果第i个元素 ...

  8. json_response的用法

    传统的方法是当我们处理一个表单时,我们Post数据给服务器,服务器对数据进行处理后将数据返回给用户,此时部分写法是用页面刷新的方式将页面重新刷新一次呈现给用户,这样的话用户相当于读入了两次页面,人一多 ...

  9. QT 静态编译后中文可能会出现乱码

    QT 静态编译后中文可能会出现乱码.这是因为处理文字编码的 libqcncodecs 库是以 plugin 形式存放在 QT 静态编译目录/plugs/codecs/libqcncodecs.a 文件 ...

  10. php利用iframe实现无刷新文件上传功能

    上传原理很简单就是利用表单的打开方式为iframe的name名,这样就可以在当前页面的iframe打来了,实现文件上传,再利用js返回上传结果. form target .在 action 属性中规定 ...