转载请注明出处:http://blog.csdn.net/lttree

Ignatius and the Princess II

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 4436    Accepted Submission(s): 2642

Problem Description
Now our hero finds the door to the BEelzebub feng5166. He opens the door and finds feng5166 is about to kill our pretty Princess. But now the BEelzebub has to beat our hero first. feng5166 says, "I have three question for you, if you can work them out, I will
release the Princess, or you will be my dinner, too." Ignatius says confidently, "OK, at last, I will save the Princess."



"Now I will show you the first problem." feng5166 says, "Given a sequence of number 1 to N, we define that 1,2,3...N-1,N is the smallest sequence among all the sequence which can be composed with number 1 to N(each number can be and should be use only once
in this problem). So it's easy to see the second smallest sequence is 1,2,3...N,N-1. Now I will give you two numbers, N and M. You should tell me the Mth smallest sequence which is composed with number 1 to N. It's easy, isn't is? Hahahahaha......"

Can you help Ignatius to solve this problem?
 
Input
The input contains several test cases. Each test case consists of two numbers, N and M(1<=N<=1000, 1<=M<=10000). You may assume that there is always a sequence satisfied the BEelzebub's demand. The input is terminated by the end of file.
 
Output
For each test case, you only have to output the sequence satisfied the BEelzebub's demand. When output a sequence, you should print a space between two numbers, but do not output any spaces after the last number.
 
Sample Input
6 4
11 8
 
Sample Output
1 2 3 5 6 4
1 2 3 4 5 6 7 9 8 11 10
 
Author
Ignatius.L
 

题目:

pid=1027">http://acm.hdu.edu.cn/showproblem.php?pid=1027

这道题,题意就是求 N的第m种排列。

应该属于组合数学中的一种。刚好之前做过康托展开,就感觉能够用康托展开来做。

(康拓展开详情可戳→http://blog.csdn.net/lttree/article/details/24798653

可是,我看了看数据范围就被吓到了, N and M(1<=N<=1000, 1<=M<=10000)。

阶乘,最多仅仅是10。怎么N能够到1000.。。。

细致一想就能够发现,M最大为10000。也就是说。最多也就仅仅有后面8个数才会动。前面不会动的。

由于1~8的阶乘为:1,2,6,24,120,720,5040,40320.

8的阶乘为40320>10000  10000种以内的排列序,仅仅能在最后8个变化。

换种说法,不管N为多少,当N>8时,前N-8是不变的。仅仅有后面8个在变化。

比如:N为11,那么前面3个数为1 2 3顺序一定不变。变化的永远是后面4~11

思路想出来后。解决这道题就不算太难。

本来我用的是,边算遍输出。可是总是PE,可能还是有地方没想到吧。

就直接将答案存在一个ans数组里。最后一起输出,就AC了。

/****************************************
*****************************************
* Author:Tree *
*From :http://blog.csdn.net/lttree *
* Title : Ignatius and the Princess II *
*Source: hdu 1027 *
* Hint : 康托展开 *
*****************************************
****************************************/ #include <iostream>
using namespace std;
int fac[]={1,1,2,6,24,120,720,5040,40320};
// 存储答案
int ans[10001],len;
// 康托展开的逆 n为要对几位数排序,k为第几个数,num为这n个数应该从多少開始
void reverse_kangtuo(int n,int k,int num)
{
int i, j, t, vst[11]={0};
char s[11]; --k;
for (i=0; i<n; i++)
{
t = k/fac[n-i-1];
for (j=1; j<=n; j++)
if (!vst[j])
{
if (t == 0) break;
--t;
}
s[i] = '0'+j;
vst[j] = 1;
k %= fac[n-i-1];
}
// 排序后的赋给答案数组
for(int kk=0;kk<n;++kk)
ans[len++]=s[kk]-'1'+num;
} int main()
{
int n,m;
int i,j,temp1,temp2;
while( cin>>n>>m )
{
i=1;
len=0;
if( n>8 )
{
temp1=n%8;
temp2=(n/8-1)*8;
// 对应答案赋值
for(;i<=temp1;++i)
ans[len++]=i;
for(j=0;j<temp2;++j,++i)
ans[len++]=i;
reverse_kangtuo(8,m,i);
}
else reverse_kangtuo(n,m,i); // 输出,注意最后一个数后面没有空格
for(i=0;i<len-1;++i)
cout<<ans[i]<<" ";
cout<<ans[len-1]<<endl;
}
return 0;
}

ACM-简单题之Ignatius and the Princess II——hdu1027的更多相关文章

  1. ACM-简单的主题Ignatius and the Princess II——hdu1027

    转载请注明出处:http://blog.csdn.net/lttree Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Othe ...

  2. hdu1027 Ignatius and the Princess II (全排列 &amp; STL中的神器)

    转载请注明出处:http://blog.csdn.net/u012860063 题目链接:http://acm.hdu.edu.cn/showproblem.php? pid=1027 Ignatiu ...

  3. Ignatius and the Princess II(全排列)

    Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ( ...

  4. (全排列)Ignatius and the Princess II -- HDU -- 1027

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1027 Ignatius and the Princess II Time Limit: 2000/100 ...

  5. HDU 1027 Ignatius and the Princess II(求第m个全排列)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1027 Ignatius and the Princess II Time Limit: 2000/10 ...

  6. HDU 1027 Ignatius and the Princess II(康托逆展开)

    Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ( ...

  7. HDU1027 Ignatius and the Princess II 【next_permutation】【DFS】

    Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ( ...

  8. Ignatius and the Princess II

    Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Jav ...

  9. (next_permutation)Ignatius and the Princess II hdu102

    Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ( ...

随机推荐

  1. Linux文件 I/O 介绍

    Linux文件 I/O 介绍 1. Linux系统调用 Linux系统调用(system call)是指操作系统提供给用户程序的一组"特殊接口",用户程序可以通过这组"特 ...

  2. HashSet的分析(转)

    一.  HashSet概述: HashSet实现Set接口,由哈希表(实际上是一个HashMap实例)支持.它不保证set 的迭代顺序:特别是它不保证该顺序恒久不变.此类允许使用null元素. 二.  ...

  3. My way to Python - Day012 - 消息中间件

    消息中间件介绍 消息中间件的概念 消息中间件是在消息传输过程中保存消息的容器.消息中间件在将消息从它的源中继到它的目标时充当中间人的作用.队列的主要作用是提供路由并保证消息的传递:如果发生消息接收者不 ...

  4. C# 对象深复制

    Mark: //实现IClonable接口并重写Clone方法就可以实现深克隆了 #region ICloneable 成员 public object Clone() { MemoryStream ...

  5. oracle插入例子

    string sql = "insert into EMST_JC_SBXX(XL,SBBM,SBWH,SBMC,CCBM,XNCS,CZXL,ZL,GL,ZZCJ,TCRQ,SYQX,XH ...

  6. Android-Context的IO功能

    如何将应用数据保存到本地文件?如何从本地文件加载数据到应用中?我实现的步骤是: 应用(java数据)<--org.json-->JSONString<--Context.IO--&g ...

  7. puppet 4.4 System Requirements

    puppet是linux下自动部署管理工具,有apply,agent/server两种模式,安装后默认为agent/server模式. apply模式下,每台机器均有自己的catalog文件,如果需要 ...

  8. 你真的了解:IIS连接数、IIS并发连接数、IIS最大并发工作线程数、应用程序池的队列长度、应用程序池的最大工作进程数 吗?

    原文链接:http://www.cnblogs.com/yinhaichao/p/4060209.html?utm_source=tuicool&utm_medium=referral 一般购 ...

  9. AngularJS的$http服务的应用

    $http有很多参数和调用方法,本文只记录比较常用的应用及参数. $http 服务:只是简单封装了浏览器原生的XMLHttpRequest对象,接收一个参数,这个参数是一个对象,包含了用来生成HTTP ...

  10. 18 java 代理模式 (转)

    静态代理 1.新建一个接口,这个接口所提供的方法是关于数据库操作的 public interface EmployeeDao { public void updateSalary(); } 2.建一个 ...