全部函数通过杭电 1142,1162,1198,1213等题目测试。

#include<iostream>
#include<vector>
#include<queue>
#include<stack>
#include<algorithm>
#include<stdio.h>
#include<stdlib.h>
using namespace std; /*
//函数集合声明下,方便查看
void Dijkstra(const denseGraph& dg, int s);
void spfa(const denseGraph& dg, int s);
weightType prim(const denseGraph& dg, int s);
void makeSet(int x);
int findSet(int x);
void unionSet(int x, int y);
weightType kruskal(const denseGraph& dg);
*/ //稠密图,邻接矩阵表示
#define N 1000 //表示顶点数最大值
#define NOEDGE 1000000 //表示无边,用于距离类求解中
typedef double weightType; //表示带边权的类型
//定义带权边类
struct edge{
int v, w;
weightType val;
edge(int v = -, int w = -, weightType val = NOEDGE) :v(v), w(w), val(val){}
};
//定义稠密图类
struct denseGraph{
int Vcnt, Ecnt; //顶点数,边数
bool dg; //有向图 ?
vector< vector<weightType> > adj; //邻接矩阵
denseGraph(int v, bool dg = false) :adj(v), Vcnt(v), Ecnt(), dg(dg){
for (int i = ; i < v; ++i)
adj[i].assign(v, NOEDGE);
}
void insert(edge e){
int v = e.v, w = e.w;
weightType val = e.val;
if (adj[v][w] == NOEDGE) ++Ecnt;
adj[v][w] = val;
if (!dg) adj[w][v] = val;
}
void show(){
printf("Vcnt = %d, Ecnt = %d, Directed : %d\n", Vcnt, Ecnt, dg);
for (int i = ; i < Vcnt; ++i){
for (int j = ; j < Vcnt-; ++j)
cout << adj[i][j] << ' ';
cout << adj[i][Vcnt - ] << endl;
}
}
}; //Dijkstra算法
weightType dDijkstra[N]; //存放所有顶点到 s 的最短路径距离
int pDijkstra[N]; //pDijkstra[i],路径存在时,存放节点 i 的前驱,不存在时,-1
void Dijkstra(const denseGraph &dg, int s)
{
bool visit[N]; //集合 S ,visit[i]=true, i 属于集合 S
for (int i = ; i < dg.Vcnt; ++i){ //初始化
visit[i] = false;
dDijkstra[i] = dg.adj[s][i];
pDijkstra[i] = dDijkstra[i] == NOEDGE ? - : s;
}
visit[s] = true; dDijkstra[s] = ;
for (int i = ; i < dg.Vcnt - ; ++i){ //dg.Vcnt-1次选点
int min = NOEDGE;
int v = ;
for (int j = ; j < dg.Vcnt; ++j){ //选距离最近点
if (!visit[j] && dDijkstra[j] < min){
v = j; min = dDijkstra[j];
}
}
visit[v] = true;
for (int j = ; j < dg.Vcnt; ++j){ //更新与 v 直接相连的顶点
if (!visit[j] && min + dg.adj[v][j] < dDijkstra[j]){
dDijkstra[j] = min + dg.adj[v][j];
pDijkstra[j] = v;
}
} }
} //最短路径 SPFA算法
weightType dSpfa[N];
int pSpfa[N];
void spfa(const denseGraph& dg, int s)
{
bool visit[N];
for (int i = ; i < dg.Vcnt; ++i){
visit[i] = false;
dSpfa[i] = NOEDGE;
pSpfa[i] = -;
}
dSpfa[s] = ;
int u;
queue<int> q;
q.push(s);
while (!q.empty()){
u = q.front(); q.pop();
for (int i = ; i < dg.Vcnt; ++i){
if (dSpfa[u] + dg.adj[u][i] < dSpfa[i]){
dSpfa[i] = dSpfa[u] + dg.adj[u][i];
pSpfa[i] = u;
if (!visit[i])
q.push(i);
}
}
}
} //最小生成树 prim
weightType dPrim[N]; //存放所有顶点到 s 的最短路径距离
weightType prim(const denseGraph& dg, int s)
{
weightType sum = ;
bool visit[N];
for (int i = ; i < dg.Vcnt; ++i){ //初始化
visit[i] = false;
dPrim[i] = dg.adj[s][i];
}
visit[s] = true; dPrim[s] = ;
for (int i = ; i < dg.Vcnt - ; ++i){
weightType min = NOEDGE;
int v = ;
for (int j = ; j < dg.Vcnt; ++j){ //选点
if (!visit[j] && dPrim[j] < min){
v = j; min = dPrim[j];
}
}
sum += min;
visit[v] = true;
for (int j = ; j < dg.Vcnt; ++j){
if (!visit[j] && dg.adj[v][j] < dPrim[j]){
dPrim[j] = dg.adj[v][j];
}
}
}
return sum;
} //并查集实现,点集[0,1,2,3,4,...,n-1]
int parentSet[N];
int rankSet[N];
void makeSet(int x)
{
parentSet[x] = x;
rankSet[x] = ;
}
void linkSet(int x, int y)
{
if (rankSet[x] > rankSet[y])
parentSet[y] = x;
else {
parentSet[x] = y;
if (rankSet[x] == rankSet[y])
++rankSet[y];
}
}
int findSet(int x)
{
vector<int> v;
while (parentSet[x] != x){
v.push_back(x);
x = parentSet[x];
}
for (int i = ; i < v.size(); ++i)
parentSet[v[i]] = x;
return x;
}
void unionSet(int x, int y)
{
linkSet(findSet(x), findSet(y));
} //最小生成树 kruskal
bool kruskalComp(const edge& a, const edge& b)
{
return a.val < b.val;
}
weightType kruskal(const denseGraph& dg)
{
weightType sum = ;
edge e;
vector<edge> ve;
for (int i = ; i < dg.Vcnt; ++i)
for (int j = ; j <= i; ++j)
if (dg.adj[i][j]!=NOEDGE)
ve.push_back(edge(i, j, dg.adj[i][j]));
if (dg.dg){
for (int i = ; i < dg.Vcnt; ++i)
for (int j = i + ; j < dg.Vcnt; ++j)
if(dg.adj[i][j]!=NOEDGE)
ve.push_back(edge(i, j, dg.adj[i][j]));
}
sort(ve.begin(), ve.end(), kruskalComp); for (int i = ; i < dg.Vcnt; ++i)
makeSet(i); for (int i = ; i < ve.size(); ++i){
e = ve[i];
int x = findSet(e.v);
int y = findSet(e.w);
if (x != y){
unionSet(x, y);
sum += e.val;
}
}
return sum;
} /*测试数据
5 6
1 3 2
1 4 2
3 4 3
1 5 12
4 2 34
5 2 24 7 8
1 3 1
1 4 1
3 7 1
7 4 1
7 5 1
6 7 1
5 2 1
6 2 1
*/
int main()
{
int v, w, val, n, m;
cin >> n >> m;
denseGraph dg(n,true);
while (m--){
cin >> v >> w >> val;
dg.insert(edge(v - , w - , val));
}
dg.show();
cout << endl;
for (int i = ; i < dg.Vcnt; ++i){
spfa(dg, i);
Dijkstra(dg, i);
for (int i = ; i < dg.Vcnt; ++i)
cout << dSpfa[i] << ' ';
cout << endl;
for (int i = ; i < dg.Vcnt; ++i)
cout << dDijkstra[i] << ' ';
cout << endl; for (int i = ; i < dg.Vcnt; ++i)
cout << pSpfa[i] << ' ';
cout << endl;
for (int i = ; i < dg.Vcnt; ++i)
cout << pDijkstra[i] << ' ';
cout << endl << endl; } for (int i = ; i < dg.Vcnt; ++i)
cout << prim(dg, i) << endl;
cout << kruskal(dg) << endl;
}

稠密图(邻接矩阵),并查集,最短路径(Dijkstra,spfa),最小生成树(kruskal,prim)的更多相关文章

  1. 几个小模板:topology, dijkstra, spfa, floyd, kruskal, prim

    1.topology: #include <fstream> #include <iostream> #include <algorithm> #include & ...

  2. 2019 蓝桥杯国赛 B 组模拟赛 E 蒜头图 (并查集判环)

    思路: 我们看条件,发现满足条件的子图无非就是一些环构成的图, 因为只有形成环,才满足边的两个点都在子图中,并且子图中节点的度是大于0的偶数. 那么如果当前有k个环,我们可以选2^k-1个子图,为什么 ...

  3. 图-连通分量-DFS-并查集-695. 岛屿的最大面积

    2020-03-15 16:41:45 问题描述: 给定一个包含了一些 0 和 1的非空二维数组 grid , 一个 岛屿 是由四个方向 (水平或垂直) 的 1 (代表土地) 构成的组合.你可以假设二 ...

  4. 洛谷P4768 [NOI2018]归程 [可持久化并查集,Dijkstra]

    题目传送门 归程 格式难调,题面就不放了. 分析: 之前同步赛的时候反正就一脸懵逼,然后场场暴力大战,现在呢,还是不会$Kruskal$重构树,于是就拿可持久化并查集做. 但是之前做可持久化并查集的时 ...

  5. 二分图建图,并查集求联通——二维等价性传递 cf1012B好题!

    /* 模拟二分图:每个点作为一条边,连接的是一列和一行(抽象成一个点,列在左,行在右) 由题意得 a-b相连,a-c相连,b-d相连,那么d-c就不用再相连了 等价于把二分图变成联通的需要再加多少边 ...

  6. [数据结构与算法-15]单源最短路径(Dijkstra+SPFA)

    单源最短路径 问题描述 分别求出从起点到其他所有点的最短路径,这次主要介绍两种算法,Dijkstra和SPFA.若无负权优先Dijkstra算法,存在负权选择SPFA算法. Dijkstra算法 非负 ...

  7. 九度OJ 1024 畅通工程 -- 并查集、贪心算法(最小生成树)

    题目地址:http://ac.jobdu.com/problem.php?pid=1024 题目描述:     省政府"畅通工程"的目标是使全省任何两个村庄间都可以实现公路交通(但 ...

  8. fzu 2087并查集的运用求最小生成树的等效边

    //对数组排序后,对于边相同并且边的两端不在一个集合内的一定是等效边或者必加边, //第一数数,第二合并集合 #include<stdio.h> #include<stdlib.h& ...

  9. PAT Advanced A1021 Deepest Root (25) [图的遍历,DFS,计算连通分量的个数,BFS,并查集]

    题目 A graph which is connected and acyclic can be considered a tree. The height of the tree depends o ...

  10. PAT Advanced 1034 Head of a Gang (30) [图的遍历,BFS,DFS,并查集]

    题目 One way that the police finds the head of a gang is to check people's phone calls. If there is a ...

随机推荐

  1. (转)三角函数计算,Cordic 算法入门

    由于最近要使用atan2函数,但是时间上消耗比较多,因而网上搜了一下简化的算法. 原帖地址:http://blog.csdn.net/liyuanbhu/article/details/8458769 ...

  2. jQuery.access源码分析

    基本理解 jQuery.attr是jQuery.attr,jQuery.prop,jQuery.css提供底层支持,jQuery里一个比较有特色的地方就是函数的重载, 比如attr,有如下几种重载 $ ...

  3. PHP学习笔记,自己动手写个MVC的框架

    最新在大家自己的博客的过程中,发现各种开源的博客系统都或多或少的用起来别扭.于是想动手自己写个博客系统.既然写,就想好好写.那就先写个MVC框架.一点一点来.写的过程中有很多想法.还希望大家能够多多指 ...

  4. 用户登录之cookie信息安全一二事

    大家都知道用户登陆后,用户信息一般会选择保存在cookie里面,因为cookie是保存客户端, 并且cookie可以在客户端用浏览器自由更改,这样将会造成用户cookie存在伪造的危险,从而可能使伪造 ...

  5. python文件处理及装饰器

    1.文件处理: Python处理文件的流程比较简单,大致分为以下几个: 打开文件==>处理文件==>生成新文件==>写入文件 先说怎么打开一个文件: 打开一个文件可以有多种写法,下面 ...

  6. Lake Counting--poj2386

    Lake Counting Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 23950   Accepted: 12099 D ...

  7. Android小代码——设置全屏

    1: public class MainActivity extends Activity { 2: @Override 3: public void onCreate(Bundle savedIns ...

  8. 【Robot Framework 介绍】总纲

    Robot Framework是一个由python构建的的开源的自动化测试框架,现在版本还在不停的更新中.由于它开源性,网上有大量的第三方接口和很多资料.下面提供两个比较官方的链接,有兴趣的同学可以直 ...

  9. Java魔法堂:打包知识点之META-INF/MAINFEST.MF(转)

    一.前言 通过执行形如 jar -cvf src.jar src 命令将多个.class文件打包成JAR包时,你会发现JAR包中除了src目录外还多了个MATE-INF/MAINFEST.MF,那是为 ...

  10. perl 实现微信简版<2>

    <pre name="code" class="python">use LWP::UserAgent; use URI::Escape; use N ...