OpenCV视屏跟踪
#include <stdio.h>
#include <iostream>
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/nonfree/nonfree.hpp"
using namespace cv; int main( int argc, char** argv )
{ CvCapture* capture = cvCreateFileCapture( "sign3.mp4" );
Mat img_object = imread( "pic3.jpg", CV_LOAD_IMAGE_GRAYSCALE );
Mat frame = cvQueryFrame( capture ); Mat img_scene;
cvtColor(frame, img_scene, CV_BGR2GRAY); int minHessian = ;
SurfFeatureDetector detector( minHessian );
std::vector<KeyPoint> keypoints_object, keypoints_scene;
detector.detect( img_object, keypoints_object ); SurfDescriptorExtractor extractor;
Mat descriptors_object, descriptors_scene;
extractor.compute( img_object, keypoints_object, descriptors_object ); FlannBasedMatcher matcher;
std::vector< DMatch > matches; std::vector<Point2f> obj;
std::vector<Point2f> scene; while()
{
frame = cvQueryFrame( capture );
cvtColor(frame, img_scene, CV_BGR2GRAY);
if( !img_object.data || !img_scene.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -; } //-- Step 1: Detect the keypoints using SURF Detector detector.detect( img_scene, keypoints_scene ); //-- Step 2: Calculate descriptors (feature vectors) extractor.compute( img_scene, keypoints_scene, descriptors_scene ); //-- Step 3: Matching descriptor vectors using FLANN matcher matcher.match( descriptors_object, descriptors_scene, matches );
double max_dist = ; double min_dist = ; //-- Quick calculation of max and min distances between keypoints
for( int i = ; i < descriptors_object.rows; i++ )
{
double dist = matches[i].distance;
if( dist < min_dist )
min_dist = dist;
if( dist > max_dist )
max_dist = dist;
}
// printf("-- Max dist : %f \n", max_dist );
// printf("-- Min dist : %f \n", min_dist ); //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< DMatch > good_matches;
for( int i = ; i < descriptors_object.rows; i++ )
{
if( matches[i].distance < *min_dist )
{
good_matches.push_back( matches[i]);
}
}
Mat img_matches;
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-), Scalar::all(-),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //-- Localize the object for( int i = ; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
Mat H = findHomography( obj, scene, CV_RANSAC,5.0 ); //-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<Point2f> obj_corners();
obj_corners[] = cvPoint(,); obj_corners[] = cvPoint( img_object.cols, );
obj_corners[] = cvPoint( img_object.cols, img_object.rows ); obj_corners[] = cvPoint( , img_object.rows );
std::vector<Point2f> scene_corners();
perspectiveTransform( obj_corners, scene_corners, H); //-- Draw lines between the corners (the mapped object in the scene - image_2 )
line( img_matches, scene_corners[] + Point2f( img_object.cols, ), scene_corners[] + Point2f( img_object.cols, ), Scalar(, , ), );
line( img_matches, scene_corners[] + Point2f( img_object.cols, ), scene_corners[] + Point2f( img_object.cols, ), Scalar( , , ), );
line( img_matches, scene_corners[] + Point2f( img_object.cols, ), scene_corners[] + Point2f( img_object.cols, ), Scalar( , , ), );
line( img_matches, scene_corners[] + Point2f( img_object.cols, ), scene_corners[] + Point2f( img_object.cols, ), Scalar( , , ), ); //-- Show detected matches
namedWindow( "Good Matches & Object detection", WINDOW_NORMAL );
imshow( "Good Matches & Object detection", img_matches );
char c = cvWaitKey();
if( c == ) break; }
return ;
}
OpenCV视屏跟踪的更多相关文章
- opencv视屏流嵌入wxpython框架
前几篇博客分享搭建人脸识别与情绪判断的环境和源码,但是没有UI,界面很难看,一打开就是opencv弹出的一个视屏框.处女座的我看着非常难受,于是决定做一个UI,稍微规矩好看一点,再怎么说,这样的话也算 ...
- opencv读取并播放avi视屏
视屏的本质是一些静态的图像的集合,opencv可以不断读取视屏中的图片,显示,就产生了类似电影的效果. 这样也就可以通过opencv对实时的视屏流进行处理了. #include "stdaf ...
- wndows程序设计之书籍知识与代码摘录-获取视屏显示器像素等参数GetsystemMetrics
以下的代码段用于获取视屏显示器的高度宽度,以像素为单位. int sxScreen, cyScreen; cxScreen = GetSystemMetrics (SM_CXSCREEN); cySc ...
- Android中使用SurfaceView+MediaPlayer+自定义的MediaController实现自定义的视屏播放器
效果图如下: (PS本来是要给大家穿gif动态图的,无奈太大了,没法上传) 功能实现:暂停,播放,快进,快退,全屏,退出全屏,等基本功能 实现的思路: 在主布局中放置一个SurfaceView,在Su ...
- 读取视屏文件,保存帧图片为ppm文件
ffmpeg跟sdl的学习过程:一.版本信息:ffmpeg-3.0.2.tar.bz2SDL2-2.0.4.tar.gz二.编译过程:1.ffmgeg的编译:./configure --enable- ...
- 加入ffmpeg播放视屏
下面的字反了..,另外没声音 2018-4-28 前段时间已经做的差不多了,音频的pack取出来用openAL播放,并实现了视屏同步播放,并且支持unity 现在的问题就是支持大分辨率视屏播放的问题, ...
- Android视屏播放兼容性问题分享
最近产品提了一个紧急需求:webview加载的URL,需要支持视频播放. 为了快速完成需求,功能实现上直接使用系统自带播放器播放视频.由于是自带播放器,需要进行兼容性测试,过程发现了不少问题,这里分享 ...
- PS学习之制作音乐视屏
素材: 新建画布 插入图片素材 调整和画布一样大小 喜欢彩色的 可以加照片滤镜 喜欢黑白的可以加黑白滤镜 也可以添加自己喜欢的文字 在窗口中选择时间轴 创建视屏时间轴 图中标记得就是每秒能播放30张 ...
- MPEG-1视屏压缩标准
MPEG-1标准包括5个部分 图像的四种类型: I帧: B帧:双向帧间预测 P帧: D帧:只含有16分量,为快放设计 压缩前需要帧重排 视屏码流结构 I帧压缩 p帧压缩 b帧压缩 其他压缩算法 MPE ...
随机推荐
- Java vs Python
面试时常问到这两种语言的区别,在此总结一下. Referrence: Udemy:python-vs-java Generally, Python is much simpler to use, an ...
- 《Algorithms 4th Edition》读书笔记——2.4 优先队列(priority queue)-Ⅵ
· 学后心得体会与部分习题实现 心得体会: 曾经只是了解了优先队列的基本性质,并会调用C++ STL库中的priority_queue以及 java.util.PriorityQueue<E&g ...
- 《Java程序员面试笔试宝典》之Java程序初始化的顺序是怎样的
在Java语言中,当实例化对象时,对象所在类的所有成员变量首先要进行初始化,只有当所有类成员完成初始化后,才会调用对象所在类的构造函数创建对象. Java程序的初始化一般遵循以下三个原则(以下三原则优 ...
- bootstrap 导航布局
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...
- pyqt字符串分离开,放入列表中
string1 = ''''' the stirng Has many line In THE fIle ''' list_of_string = string1.split() print list ...
- IOS消息推送情况总结
App没有启动的时候,接受到了消息通知.这个时候操作系统会按默认方式来展示一个alert,在App Icon上标记一个数字 .当程序处于关闭状态收到推送消息时,点击图标或消息栏会调用 - (BOO ...
- Promise 异步执行的同步操作
Promise 是用来执行异步操作的. 但有时一个异步操作需要等其他的异步操作完成,这时候就可以使用then来做. function loadImageAsync(url) { return new ...
- proxy set 拦截
set方法用来拦截某个属性的赋值操作. 假定Person对象有一个age属性,该属性应该是一个不大于200的整数,那么可以使用Proxy保证age的属性值符合要求. let validator = { ...
- UDP通讯协议
常见的通讯协议有udp和tcp. 先来简单了解一下这两个协议各自的特点: UDP: --将数据及源.目的封装在数据包中,不需要建立连接: --每个数据包的大小限制在64k以内: --因无连接,是不可靠 ...
- Bom和Dom编程以及js中prototype的详解
一.Bom编程: 1.事件练习: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "h ...