[JXOI2017]数列
一个不太一样的做法
当\(A_{i-1}=x\),称\(A_1\)到\(A_{i-2}\)中大于等于\(A_{i-1}\)的最小值\(R\)为上界,\(A_1\)到\(A_{i-2}\)中小于等于\(A_{i-1}\)的最大值\(L\)为下界。对于一组\((L,R,x)\)显然有\(L\leq x\leq R\),我们下一个能填的数也只能在这个范围内。
当我们\(A_i=y\)的时候,考虑新的上下界分别是谁。
当\(x\leq y\leq R\)的时候,显然小于等于\(y\)中最大的是\(x\),大于等于\(y\)中最大的是\(R\),所以新的下界是\(x\),上界\(R\),三元组变成了\((x,R,y)\)
当\(L\leq y< x\)的时候,新的上界是\(x\),下界是\(L\),三元组变成了\((L,x,y)\)
到这里我们就可以写一个dp了,设\(f_{i,j,k,p}\)表示填了\(i\)个数,末尾三元组的状态是\((j,k,p)\),转移的时候枚举下一位填什么推出下一个三元组即可。状态数是\(O(nr_i^3)\),转移是\(O(r_i)\)的,复杂度是\(O(nr_i^4)\)不是很能接受
再观察一下这个dp的转移,发现它非常别致,我们枚举下一位填的数\(y\)
当\(p\leq y\leq k\),\(f_{i,j,k,p}\)向\(f_{i+1,x,k,y}\)转移,这个转移和\(j\)这一维没有关系
当\(j\leq y< p\),\(f_{i,j,k,p}\)向\(f_{i+1,j,x,y}\)转移,这个转移和\(k\)这一维没有关系
考虑一下是否可以去掉一维,上下界中只保存一个能否进行转移
显然是可以的,设\(dp_{i,j,k}\)表示当前填了\(i\)个数,上/下界为\(j\),末尾填的数为\(k\)。我们强行规定当\(k\leq j\)的时候,\(j\)为上界;当\(k>j\)的时候,\(j\)为下界
即对于原来的\(f_{i,j,k,p}\)拆分成了两个状态\(dp_{i,j,p}\)和\(dp_{i,k,p}\),这两个状态各自完成\(f_{i,j,k,p}\)的一部分转移。其中\(dp_{i,j,p}\)负责\(j\leq y<p\)的转移;\(dp_{i,k,p}\)负责\(p\leq y\leq k\)的转移。注意转移之后得到的仍旧是一个完整的上下界都有的状态,我们还是要把这个状态拆分一下。
转移的时候还是枚举下一位填什么数,根据填的数推出转移的状态即可。注意当一下位填的数和上下界相等时,新的上下界就固定了。
这样的状态数就变成了\(O(nr_i^2)\),复杂度是\(O(nr_i^3)\),不知道为什么跑的比较快,luogu最优解,loj位列rk3
代码
#include<bits/stdc++.h>
#define re register
#define max(a,b) ((a)>(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=155;
const int mod=998244353;
inline int qm(int x) {return x>=mod?x-mod:x;}
int h[55],n,o,R,dp[2][maxn][maxn];
int main() {
n=read();for(re int i=1;i<=n;i++) h[i]=read(),R=max(R,h[i]);R++;
for(re int i=1;i<=h[2];++i)
for(re int j=1;j<=h[1];++j) {
if(j>=i) {if(i!=j) dp[0][i][0]++;}
else dp[0][i][R]++;
dp[0][i][j]++;
}
for(re int i=3;i<=n;i++,o^=1) {
memset(dp[o^1],0,sizeof(dp[o^1]));
for(re int j=1;j<=h[i-1];j++)
for(re int k=0;k<=R;++k) {
if(!dp[o][j][k]) continue;
if(k<j) {
for(re int p=k;p<j;p++)
if(p<=h[i]&&p>0) {
if(p==k) {
dp[o^1][p][p]=qm(dp[o^1][p][p]+dp[o][j][k]);
continue;
}
dp[o^1][p][k]=qm(dp[o^1][p][k]+dp[o][j][k]);
dp[o^1][p][j]=qm(dp[o^1][p][j]+dp[o][j][k]);
}
}
else {
for(re int p=j;p<=k;++p)
if(p<=h[i]&&p>0) {
if(p==j||p==k) {
dp[o^1][p][p]=qm(dp[o^1][p][p]+dp[o][j][k]);
continue;
}
dp[o^1][p][j]=qm(dp[o^1][p][j]+dp[o][j][k]);
dp[o^1][p][k]=qm(dp[o^1][p][k]+dp[o][j][k]);
}
}
}
}
int ans=0;
for(re int i=1;i<=h[n];++i)
for(re int j=i;j<=R;++j) ans=qm(ans+dp[o][i][j]);
return !printf("%d\n",ans);
}
[JXOI2017]数列的更多相关文章
- [P4063][JXOI2017]数列(DP)
题目描述 九条可怜手上有一个长度为 n 的整数数列 ri,她现在想要构造一个长度为 n 的,满足如下条件的整数数列 A: • 1 ≤ Ai ≤ ri. • 对于任意 3 ≤ i ≤ n,令 R 为 A ...
- 洛谷P4063 [JXOI2017]数列(dp)
题意 题目链接 Sol 这题想还是不难想的,就是写起来很麻烦,然后去看了一下loj的最短代码表示只能Orz 首先不难发现一条性质:能够选择的区间一定是不断收缩的,而且新的可选区间一定是旧区间的某个位置 ...
- AHOI2018训练日程(3.10~4.12)
(总计:共90题) 3.10~3.16:17题 3.17~3.23:6题 3.24~3.30:17题 3.31~4.6:21题 4.7~4.12:29题 ZJOI&&FJOI(6题) ...
- [JXOI2017]颜色 线段树求点对贡献
[JXOI2017]颜色 题目链接 https://www.luogu.org/problemnew/show/P4065 题目描述 可怜有一个长度为 n 的正整数序列 Ai,其中相同的正整数代表着相 ...
- [BZOJ5011][JXOI2017]颜色
5011: [Jx2017]颜色 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 84 Solved: 46[Submit][Status][Disc ...
- C#求斐波那契数列第30项的值(递归和非递归)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- BZOJ1500[NOI2005]维修数列
Description Input 输入的第1 行包含两个数N 和M(M ≤20 000),N 表示初始时数列中数的个数,M表示要进行的操作数目.第2行包含N个数字,描述初始时的数列.以下M行,每行一 ...
- PAT 1049. 数列的片段和(20)
给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段.例如,给定数列{0.1, 0.2, 0.3, 0.4},我们有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1 ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
随机推荐
- Scrapy框架: 异常错误处理
import scrapy from scrapy.spidermiddlewares.httperror import HttpError from twisted.internet.error i ...
- c# 使用网站的身份验证及 Cookie 的获取与使用
C# 的 Http 访问可以使用 .net 自带的 HttpWebRequest, WebClient, HttpClient 类.也可以使用开源库 RestSharp . RestSharp 的优 ...
- SpringMVC学习(5):数据绑定2 @PathVariable、@CookieValue、@RequestHeader、@ModelAttribute..
在系列(4)中我们介绍了如何用@RequestParam来绑定数据,下面我们来看一下其它几个数据绑定注解的使用方法. 1.@PathVariable 用来绑定URL模板变量值,这个我们已经在系列(3) ...
- Golang 读书
var a map[string] int 类似Key\Value var( 多个变量,避免多次声明var ) 声明变量 多重赋值 i,j=j,i 匿名变量 _ literal 字面常量 con ...
- 初识PHP变量函数语法
PHP连接字符串 . <?php '你好,'.'我的亲爱的老师'?> PHP语句结束符 <?php echo "欢迎同学们!"; echo "Welco ...
- 【知识强化】第五章 传输层 5.3 TCP协议
这节课我们来学习一下TCP协议的特点以及TCP报文段的格式. 首先呢我们来看一下TCP有哪些特点呢.之前我们说过TCP它是一个比较可靠的面向连接的协议,所以最主要的特点它是可以面向连接的一种传输层协议 ...
- 2018-2-13-win10-UWP-九幽登录
title author date CreateTime categories win10 UWP 九幽登录 lindexi 2018-2-13 17:23:3 +0800 2018-2-13 17: ...
- 创建Uboot 环境变量 bin 文件
As we know, the bootloader stores its configuration into an area of the flash called the environment ...
- Linux历史命令管理以及用法
history [-c] [-d offset] [n] history -anrw [filename] history -ps arg [arg...] -c: 清空命令历史 -d offset: ...
- android中返回数据给上一个活动,可以用来回显数据
(一)who简介:没错,就是startActivityForResult()方法,这个方法用来在活动被销毁的时候返回数据给上一个方法.参数说明: startActivityForResult(inte ...