LOJ 3093 「BJOI2019」光线——数学+思路
题目:https://loj.ac/problem/3093
考虑经过种种反射,最终射下去的光线总和。往下的光线就是这个总和 * a[ i ] 。
比如只有两层的话,设射到第二层的光线是 lst ,那么 \( lst' = ( lst + lst*b[2]*b[1] + lst*(b[2]*b[1])^2 + ... )*a[2] \)
考虑令 f[ i ] 表示 “从第 i 层下面射上来的单位光线在考虑第 i+1 层反射的情况下射下去的值” 。
\( f[i] = b[i]+a[i]*f[i-1]*a[i] + ( b[i]+a[i]*f[i-1]*a[i] ) * b[i+1] * ( b[i]+a[i]*f[i-1]*a[i]) + ... \)
其中 \( b[i]+a[i]*f[i-1]*a[i] \) 就是一次反射下去的光线和。设 \( x = b[i]+a[i]*f[i-1]*a[i] \)
式子也就是 \( f[i]=x+x*b[i+1]*x + ... = x \sum\limits_{k=0}^{\infty}(b[i+1]*x)^k \)
然后令 lst 表示透过第 i-1 层的光线,lst' 表示透过第 i 层的光线,就有 \( lst' = (lst + lst*b[i]*f[i-1])*a[i] \)
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return fx?ret:-ret;
}
const int N=5e5+,mod=1e9+;
int upt(int x){while(x>=mod)x-=mod;while(x<)x+=mod;return x;}
int pw(int x,int k)
{int ret=;while(k){if(k&)ret=(ll)ret*x%mod;x=(ll)x*x%mod;k>>=;}return ret;} int n,a[N],b[N],f[N],ans;
int main()
{
n=rdn(); int iv=pw(,mod-);
for(int i=;i<=n;i++)
{
a[i]=(ll)rdn()*iv%mod;
b[i]=(ll)rdn()*iv%mod;
}
for(int i=;i<=n;i++)
{
int x=(b[i]+(ll)a[i]*f[i-]%mod*a[i])%mod;
f[i]=(ll)x*pw(upt(-(ll)x*b[i+]%mod),mod-)%mod;
}
ans=a[];
for(int i=;i<=n;i++)
ans=(+(ll)b[i]*f[i-])%mod*ans%mod*a[i]%mod;
printf("%d\n",ans);
return ;
}
LOJ 3093 「BJOI2019」光线——数学+思路的更多相关文章
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
- LOJ#3093. 「BJOI2019」光线(递推+概率期望)
题面 传送门 题解 把\(a_i\)和\(b_i\)都变成小数的形式,记\(f_i\)表示\(1\)单位的光打到第\(i\)个玻璃上,能从第\(n\)个玻璃下面出来的光有多少,记\(g_i\)表示能从 ...
- 【LOJ】#3093. 「BJOI2019」光线
LOJ#3093. 「BJOI2019」光线 从下到上把两面镜子合成一个 新的镜子是\((\frac{a_{i}a_{i + 1}}{1 - b_{i}b_{i + 1}},b_{i} + \frac ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- LOJ 3093: 洛谷 P5323: 「BJOI2019」光线
题目传送门:LOJ #3093. 题意简述: 有 \(n\) 面玻璃,第 \(i\) 面的透光率为 \(a\),反射率为 \(b\). 问把这 \(n\) 面玻璃按顺序叠在一起后,\(n\) 层玻璃的 ...
- loj 3090 「BJOI2019」勘破神机 - 数学
题目传送门 传送门 题目大意 设$F_{n}$表示用$1\times 2$的骨牌填$2\times n$的网格的方案数,设$G_{n}$$表示用$1\times 2$的骨牌填$3\times n$的网 ...
- LOJ 3089 「BJOI2019」奥术神杖——AC自动机DP+0/1分数规划
题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include< ...
- LOJ 2547 「JSOI2018」防御网络——思路+环DP
题目:https://loj.ac/problem/2547 一条树边 cr->v 会被计算 ( n-siz[v] ) * siz[v] 次.一条环边会被计算几次呢?于是去写了斯坦纳树. #in ...
- LOJ 3094 「BJOI2019」删数——角标偏移的线段树
题目:https://loj.ac/problem/3094 弱化版是 AGC017C . 用线段树维护那个题里的序列即可. 对应关系大概是: 真实值的范围是 [ 1-m , n+m ] :考虑设偏移 ...
随机推荐
- This service allows sftp connections only
这是因为该用用户只开通了sftp,ssh被禁了 可以通过别的主机ssh登陆这台机器 app@home:/software>ssh mysftp@192.168.0.1 Authorized on ...
- Linux运维工程师需掌握的技能
笔者是运维工程师,对Linux方面有点心得,现在说一下需要掌握哪方面的工具吧.说到工具,在行外可以说是技能,在行内我们一般称之为工具,就是运维必须要掌握的工具.我就大概列出这几方面,这样入门就基本没有 ...
- MySQL 中的 information_schema 数据库
1. 概述 information_schema 数据库跟 performance_schema 一样,都是 MySQL 自带的信息数据库.其中 performance_schema 用于性能分析,而 ...
- std::map使用结构体自定义键值
使用STL中的map时候,有时候需要使用结构题自定义键值,比如想统计点的坐标出现的次数 struct Node{ int x,y; }; ...... map<Node,int>mp; m ...
- sourcetree for mac 使用
1.sourceTree clone 仓库 打开sourceTree, 点击 新仓库(1) -> 从url克隆(2), 如下图 如下图所示, 粘贴源url路径, 自动补全或者手动选择目标路径和名 ...
- Vue-实现简单拖拽(自定义属性)
<!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"& ...
- 【Vue 2.X】基于input[type='number']封装parseFloat、parseInt-自定义指令系列(一)
一.parseFloat 效果:限制负值输入,且输入值不为空时自动保留两位小数,等同于js的parseFloat(value).toFixed(2) 使用:与v-model配合使用,v-parseFl ...
- Redis设计与实现 -- 动态字符串对象(SDS)
1. 动态字符串( simple dynamic string, SDS) 在 Redis 中,当需要可以被重复修改的字符串时,会使用 SDS 类型 ,而不是 C 语言中默认的 C 字符串类型 .举个 ...
- js中的对象类型的基本操作
示例 /** * 对象属于一种复合数据类型,在对象中可以保存多个不同数据类型的属性 * 对象的分类: * 1.内建对象 * - 由ES标准定义的对象,在任何ES的实现中都可以使用,比如:Math, * ...
- JavaScript——正则匹配、正则提取、正则替换
正则匹配 // 匹配日期 var dateStr = '2015-10-10'; var reg = /^\d{4}-\d{1,2}-\d{1,2}$/ console.log(reg.test(da ...