At the beginning, the difference between rank and dimension: rank is a property for matrix, while dimension for subspaces. So we can obtain the rank of A, which reveals dimensions of four subspaces(2 from A, 2 from AT).

Important fact: The row space and column space have the same dimension r (the rank of the matrix).  N(A) and N(AT) have dimensions n - rand m - r, to make up thefull nand m. C(A) and C(R) are different subspaces, because row operations reserve row spaces, but change column spaces.

Four subspaces:

Illustration:Notice the relationships between A and R:

1. The row space of R has dimension two, matching the rank. The first two row span the space, and the third row contributes nothing. The pivot rows are independent, so they are a basis for the row space.

A has the same row space as R. Same dimension r and same basis. Row operations don't change row space, because every row in of A is a combination of R.

2. The column space of R has dimension r=2. The number of independent rows is equal to the number of independent columns.The pivot columns are basis of  C(R), and they span the column space.

C(A) has dimension r=2. However, C(A)≠C(R)! The same combinations of the columns are zero (or nonzero) for A and R. Say that another way: Ax = 0 exactly when Rx = 0.

3. The null space of R has the dimension n-r. Apart from pivot columns, there are n-r free variables,giving us n-r special solutions. The combination of them span the null space of R. And the special solutions are a basis of R. The fact is: To generate zero by column combinations, we must set pivot columns always equals zero, then combine free variable columns linearly to span the null space.

A has the same nullspace as R. Same dimension n - r and same basis. Reason: The elimination steps don't change the solutions.

4. The nul space of RT has dimension m-r, it is to generate zero by row combinations. As well, the pivot rows need to be zero, then we have m-r free variable rows. The reason for the name "left nullspace" is that RTy = 0 can be transposed to yTR = 0T.

The left nullspace of A has dimension m - r.

【读书笔记】:MIT线性代数(5):Four fundamental subspaces的更多相关文章

  1. 《3D Math Primer for Graphics and Game Development》读书笔记1

    <3D Math Primer for Graphics and Game Development>读书笔记1 本文是<3D Math Primer for Graphics and ...

  2. 《Python神经网络编程》的读书笔记

    文章提纲 全书总评 读书笔记 C01.神经网络如何工作? C02.使用Python进行DIY C03.开拓思维 附录A.微积分简介 附录B.树莓派 全书总评 书本印刷质量:4星.纸张是米黄色,可以保护 ...

  3. linux内核分析 1、2章读书笔记

    一.linux历史 20世纪60年代,MIT开发分时操作系统(Compatible TIme-Sharing System),支持30台终端访问主机: 1965年,Bell实验室.MIT.GE(通用电 ...

  4. 【读书笔记】《Computer Organization and Design: The Hardware/Software Interface》(1)

    笔记前言: <Computer Organization and Design: The Hardware/Software Interface>,中文译名,<计算机组成与设计:硬件 ...

  5. 读书笔记汇总 - SQL必知必会(第4版)

    本系列记录并分享学习SQL的过程,主要内容为SQL的基础概念及练习过程. 书目信息 中文名:<SQL必知必会(第4版)> 英文名:<Sams Teach Yourself SQL i ...

  6. 读书笔记--SQL必知必会18--视图

    读书笔记--SQL必知必会18--视图 18.1 视图 视图是虚拟的表,只包含使用时动态检索数据的查询. 也就是说作为视图,它不包含任何列和数据,包含的是一个查询. 18.1.1 为什么使用视图 重用 ...

  7. 《C#本质论》读书笔记(18)多线程处理

    .NET Framework 4.0 看(本质论第3版) .NET Framework 4.5 看(本质论第4版) .NET 4.0为多线程引入了两组新API:TPL(Task Parallel Li ...

  8. C#温故知新:《C#图解教程》读书笔记系列

    一.此书到底何方神圣? 本书是广受赞誉C#图解教程的最新版本.作者在本书中创造了一种全新的可视化叙述方式,以图文并茂的形式.朴实简洁的文字,并辅之以大量表格和代码示例,全面.直观地阐述了C#语言的各种 ...

  9. C#刨根究底:《你必须知道的.NET》读书笔记系列

    一.此书到底何方神圣? <你必须知道的.NET>来自于微软MVP—王涛(网名:AnyTao,博客园大牛之一,其博客地址为:http://anytao.cnblogs.com/)的最新技术心 ...

随机推荐

  1. 利用Lua实现二叉查找树并进行各种遍历

    -- author : coder_zhang-- date : 2014-6-25 root = nil function insert_node(number) if root == nil th ...

  2. 微信、QQ、新浪微博等第三方登录,你想知道的都在这了(上) 微信、QQ、新浪微博等第三方登录,你想知道的都在这了(下)

    微信.QQ.新浪微博等第三方登录,你想知道的都在这了(上):https://www.jianshu.com/p/133d84042483 微信.QQ.新浪微博等第三方登录,你想知道的都在这了(下):h ...

  3. JSTL报错Unable to read TLD "META-INF/c.tld" from JAR file "file.............................

    **********菜鸟的福利^_^************ 我用的是jstl-1.2.jar,网上很多说法是删掉工程lib下面的两个jar包,那是之前的老版本,现在整合成一个了. 我出现这个问题的原 ...

  4. 转载一篇别人分享的VSFTPD.CONF的中文解释方便以后查询

    # 服务器以standalong模式运行,这样可以进行下面的控制 listen=YES # 接受匿名用户 anonymous_enable=YES # 匿名用户login时不询问口令 no_anon_ ...

  5. django报错

    报错: SyntaxError Generator expression must be parenthesized 问题原因: 由于django 1.11版本和python3.7版本不兼容, 2.0 ...

  6. python爬虫:抓取下载视频文件,合并ts文件为完整视频

    1.获取m3u8文件 2.代码 """@author :Eric-chen@contact :sygcrjgx@163.com@time :2019/6/16 15:32 ...

  7. Android kotlin静态属性、静态方法

    只需要用 companion object 包裹相应代码块即可.以静态属性为例: class Constants { companion object { val BASE_URL = "h ...

  8. Vue:对象更改检测注意事项

    还是由于 JavaScript 的限制,Vue 不能检测对象属性的添加或删除: var vm = new Vue({ data: { a: 1 } }) // `vm.a` 现在是响应式的 vm.b ...

  9. springMVC的controller更改了,如何不重启,而自动刷新的解决办法(亲测,一招解决)

    Tomcat  con/ service.xml  配置如下一行代码: <Context reloadable="true"/> </Host> 然后以de ...

  10. 【Linux】清理缓存buffer/cache

    运行sync将dirty的内容写回硬盘 sync 通过修改proc系统的drop_caches清理free的cache echo 3 > /proc/sys/vm/drop_caches ech ...