At the beginning, the difference between rank and dimension: rank is a property for matrix, while dimension for subspaces. So we can obtain the rank of A, which reveals dimensions of four subspaces(2 from A, 2 from AT).

Important fact: The row space and column space have the same dimension r (the rank of the matrix).  N(A) and N(AT) have dimensions n - rand m - r, to make up thefull nand m. C(A) and C(R) are different subspaces, because row operations reserve row spaces, but change column spaces.

Four subspaces:

Illustration:Notice the relationships between A and R:

1. The row space of R has dimension two, matching the rank. The first two row span the space, and the third row contributes nothing. The pivot rows are independent, so they are a basis for the row space.

A has the same row space as R. Same dimension r and same basis. Row operations don't change row space, because every row in of A is a combination of R.

2. The column space of R has dimension r=2. The number of independent rows is equal to the number of independent columns.The pivot columns are basis of  C(R), and they span the column space.

C(A) has dimension r=2. However, C(A)≠C(R)! The same combinations of the columns are zero (or nonzero) for A and R. Say that another way: Ax = 0 exactly when Rx = 0.

3. The null space of R has the dimension n-r. Apart from pivot columns, there are n-r free variables,giving us n-r special solutions. The combination of them span the null space of R. And the special solutions are a basis of R. The fact is: To generate zero by column combinations, we must set pivot columns always equals zero, then combine free variable columns linearly to span the null space.

A has the same nullspace as R. Same dimension n - r and same basis. Reason: The elimination steps don't change the solutions.

4. The nul space of RT has dimension m-r, it is to generate zero by row combinations. As well, the pivot rows need to be zero, then we have m-r free variable rows. The reason for the name "left nullspace" is that RTy = 0 can be transposed to yTR = 0T.

The left nullspace of A has dimension m - r.

【读书笔记】:MIT线性代数(5):Four fundamental subspaces的更多相关文章

  1. 《3D Math Primer for Graphics and Game Development》读书笔记1

    <3D Math Primer for Graphics and Game Development>读书笔记1 本文是<3D Math Primer for Graphics and ...

  2. 《Python神经网络编程》的读书笔记

    文章提纲 全书总评 读书笔记 C01.神经网络如何工作? C02.使用Python进行DIY C03.开拓思维 附录A.微积分简介 附录B.树莓派 全书总评 书本印刷质量:4星.纸张是米黄色,可以保护 ...

  3. linux内核分析 1、2章读书笔记

    一.linux历史 20世纪60年代,MIT开发分时操作系统(Compatible TIme-Sharing System),支持30台终端访问主机: 1965年,Bell实验室.MIT.GE(通用电 ...

  4. 【读书笔记】《Computer Organization and Design: The Hardware/Software Interface》(1)

    笔记前言: <Computer Organization and Design: The Hardware/Software Interface>,中文译名,<计算机组成与设计:硬件 ...

  5. 读书笔记汇总 - SQL必知必会(第4版)

    本系列记录并分享学习SQL的过程,主要内容为SQL的基础概念及练习过程. 书目信息 中文名:<SQL必知必会(第4版)> 英文名:<Sams Teach Yourself SQL i ...

  6. 读书笔记--SQL必知必会18--视图

    读书笔记--SQL必知必会18--视图 18.1 视图 视图是虚拟的表,只包含使用时动态检索数据的查询. 也就是说作为视图,它不包含任何列和数据,包含的是一个查询. 18.1.1 为什么使用视图 重用 ...

  7. 《C#本质论》读书笔记(18)多线程处理

    .NET Framework 4.0 看(本质论第3版) .NET Framework 4.5 看(本质论第4版) .NET 4.0为多线程引入了两组新API:TPL(Task Parallel Li ...

  8. C#温故知新:《C#图解教程》读书笔记系列

    一.此书到底何方神圣? 本书是广受赞誉C#图解教程的最新版本.作者在本书中创造了一种全新的可视化叙述方式,以图文并茂的形式.朴实简洁的文字,并辅之以大量表格和代码示例,全面.直观地阐述了C#语言的各种 ...

  9. C#刨根究底:《你必须知道的.NET》读书笔记系列

    一.此书到底何方神圣? <你必须知道的.NET>来自于微软MVP—王涛(网名:AnyTao,博客园大牛之一,其博客地址为:http://anytao.cnblogs.com/)的最新技术心 ...

随机推荐

  1. 实现自己的DiscoveryClient

    需要做的: DiscoveryClient能提供那些服务的服务名列表 返回指定服务对于的ServiceInstance列表 返回DiscoveryClient的顺序 返回HealthIndicator ...

  2. Vuejs中关于computed、methods、watch,mounted的区别

    1.computed是在HTML DOM加载后马上执行的,如赋值: 2.methods则必须要有一定的触发条件才能执行,如点击事件: 3.watch呢?它用于观察Vue实例上的数据变动.对应一个对象, ...

  3. java中位运算和移位运算详解

    一.位运算 (1)按 位 与 & 如果两个相应的二进制形式的对应的位数都为1,则结果为1,记为同1为1,否则为0.首先我们看一下对正数的运算        分别看一下正数和负数的具体运算步骤 ...

  4. python进行两个大数相加

    python进行两个大数相加:由于int类型32位或64位都有长度限制,超出会内存溢出,无法计算,那么解决方法如下: 思路: 1.将超长数转换成字符串 2.进行长度补零,即让两个要计算的字符串长度一样 ...

  5. Java调用MySql数据库函数

    Java调用MySql数据库函数 /** * 调用mysql的自定义函数 * */ private void test() { logger.info("show task start &q ...

  6. SpringBoot中Redis的使用

    转载:http://www.ityouknow.com/springboot/2016/03/06/spring-boot-redis.html Spring Boot 对常用的数据库支持外,对 No ...

  7. php 从7.0升级到7.2

    下面的方法安装的php是非线程安全的,apache2服务器用不了 1. 添加Ondřej Surý提供的PHP源: sudo apt-get install software-properties-c ...

  8. Autoit3域用户的登陆统计

    #include <ACN_NET.au3> If @OSArch="X86" Then $fileURL=@CommonFilesDir & "\S ...

  9. ES5和ES6数组方法

    ES5 方法 indexOf和lastIndexOf 都接受两个参数:查找的值.查找起始位置不存在,返回 -1 :存在,返回位置.indexOf 是从前往后查找, lastIndexOf 是从后往前查 ...

  10. nyoj 600:花儿朵朵(树状数组+坐标离散化)

    http://acm.nyist.net/JudgeOnline/problem.php?pid=600 只附代码好了 #include<bits/stdc++.h> using name ...