At the beginning, the difference between rank and dimension: rank is a property for matrix, while dimension for subspaces. So we can obtain the rank of A, which reveals dimensions of four subspaces(2 from A, 2 from AT).

Important fact: The row space and column space have the same dimension r (the rank of the matrix).  N(A) and N(AT) have dimensions n - rand m - r, to make up thefull nand m. C(A) and C(R) are different subspaces, because row operations reserve row spaces, but change column spaces.

Four subspaces:

Illustration:Notice the relationships between A and R:

1. The row space of R has dimension two, matching the rank. The first two row span the space, and the third row contributes nothing. The pivot rows are independent, so they are a basis for the row space.

A has the same row space as R. Same dimension r and same basis. Row operations don't change row space, because every row in of A is a combination of R.

2. The column space of R has dimension r=2. The number of independent rows is equal to the number of independent columns.The pivot columns are basis of  C(R), and they span the column space.

C(A) has dimension r=2. However, C(A)≠C(R)! The same combinations of the columns are zero (or nonzero) for A and R. Say that another way: Ax = 0 exactly when Rx = 0.

3. The null space of R has the dimension n-r. Apart from pivot columns, there are n-r free variables,giving us n-r special solutions. The combination of them span the null space of R. And the special solutions are a basis of R. The fact is: To generate zero by column combinations, we must set pivot columns always equals zero, then combine free variable columns linearly to span the null space.

A has the same nullspace as R. Same dimension n - r and same basis. Reason: The elimination steps don't change the solutions.

4. The nul space of RT has dimension m-r, it is to generate zero by row combinations. As well, the pivot rows need to be zero, then we have m-r free variable rows. The reason for the name "left nullspace" is that RTy = 0 can be transposed to yTR = 0T.

The left nullspace of A has dimension m - r.

【读书笔记】:MIT线性代数(5):Four fundamental subspaces的更多相关文章

  1. 《3D Math Primer for Graphics and Game Development》读书笔记1

    <3D Math Primer for Graphics and Game Development>读书笔记1 本文是<3D Math Primer for Graphics and ...

  2. 《Python神经网络编程》的读书笔记

    文章提纲 全书总评 读书笔记 C01.神经网络如何工作? C02.使用Python进行DIY C03.开拓思维 附录A.微积分简介 附录B.树莓派 全书总评 书本印刷质量:4星.纸张是米黄色,可以保护 ...

  3. linux内核分析 1、2章读书笔记

    一.linux历史 20世纪60年代,MIT开发分时操作系统(Compatible TIme-Sharing System),支持30台终端访问主机: 1965年,Bell实验室.MIT.GE(通用电 ...

  4. 【读书笔记】《Computer Organization and Design: The Hardware/Software Interface》(1)

    笔记前言: <Computer Organization and Design: The Hardware/Software Interface>,中文译名,<计算机组成与设计:硬件 ...

  5. 读书笔记汇总 - SQL必知必会(第4版)

    本系列记录并分享学习SQL的过程,主要内容为SQL的基础概念及练习过程. 书目信息 中文名:<SQL必知必会(第4版)> 英文名:<Sams Teach Yourself SQL i ...

  6. 读书笔记--SQL必知必会18--视图

    读书笔记--SQL必知必会18--视图 18.1 视图 视图是虚拟的表,只包含使用时动态检索数据的查询. 也就是说作为视图,它不包含任何列和数据,包含的是一个查询. 18.1.1 为什么使用视图 重用 ...

  7. 《C#本质论》读书笔记(18)多线程处理

    .NET Framework 4.0 看(本质论第3版) .NET Framework 4.5 看(本质论第4版) .NET 4.0为多线程引入了两组新API:TPL(Task Parallel Li ...

  8. C#温故知新:《C#图解教程》读书笔记系列

    一.此书到底何方神圣? 本书是广受赞誉C#图解教程的最新版本.作者在本书中创造了一种全新的可视化叙述方式,以图文并茂的形式.朴实简洁的文字,并辅之以大量表格和代码示例,全面.直观地阐述了C#语言的各种 ...

  9. C#刨根究底:《你必须知道的.NET》读书笔记系列

    一.此书到底何方神圣? <你必须知道的.NET>来自于微软MVP—王涛(网名:AnyTao,博客园大牛之一,其博客地址为:http://anytao.cnblogs.com/)的最新技术心 ...

随机推荐

  1. 【五一qbxt】day7-2 选择客栈

    停更20天祭qwq(因为去准备推荐生考试了一直在自习qwq) [noip2011选择客栈] 这道题的前置知识是DP,可以参考=>[五一qbxt]day3 动态规划 鬼知道我写的是什么emm 这道 ...

  2. git 命令图解

    git 命令图解   初始化版本库 git config user.name "lsgx" git config user.email "lsgxthink@163.co ...

  3. JVM(2)之 JAVA堆

    开发十年,就只剩下这套架构体系了! >>>   之前我们说到了栈,它在内存中是连续的空间:保存一个个的栈帧,对应一次次方法的调用:还讲到了他是保存对象的引用,那么对象存在哪里呢?我们 ...

  4. 05.Linux-CentOS系统普通用户SSH远程问题

    问题:appuser用户SSH远程连接Linux服务器出现的问题: Connecting?to?localhost:22...Connection?established.To?escape?to?l ...

  5. python常用函数 I

    iter(iterable) 可以生成一个迭代器. 例子: islice(iterator, int, int) itertools的islice方法为迭代器生成器提供切片操作. 例子: izip_l ...

  6. python常用函数 F

    filter(callable, list/tuple) 接收一个函数和一个序列,完成元素过滤. 例子: fnmatch(str,str) 使用底层操作系统的大小写敏感规则来匹配模式. 例子: fnm ...

  7. 事件日期转BCD码

    BCD码 BCD码 BCD码 射频卡编码方式

  8. jupyter notebook 几个方法

    2. Pretty Display of Varibles 这部分内容可能很多人都知道.如果对带有一个变量或是未赋值语句的cell执行操作,Jupyter 将会自动打印该变量而无需一个输出语句. 如果 ...

  9. docker-compose.yml rabbitmq

    version: '3.1'services: mq: image: 'rabbitmq:management' restart: always ports: - '5672:5672' - '156 ...

  10. C#基础提升系列——C# LINQ

    C# LINQ LINQ(Language Integrated Query,语言集成查询).在C# 语言中集成了查询语法,可以用相同的语法访问不同的数据源. 命名空间System.Linq下的类En ...