bzoj1495 [NOI2006]网络收费 复杂度分析+树上背包
题目传送门
https://lydsy.com/JudgeOnline/problem.php?id=1495
题解
通过观察可以发现,对于一个 \(lca\),如果 \(nA \leq nB\),那么就相当于是所有选 \(A\) 的都要付出 \(f[i][j]\) 的代价。这样我们可以轻松预处理出如果某个叶子在某个 \(LCA\) 处选择了比较少的那种付费方式时应该付出的代价和。
然后考虑 dp。令 \(dp[x][i]\) 为 \(x\) 为根的子树中,\(i\) 个叶子选择了第一种付费方式的最小总费用,然后可以通过背包合并来转移。
但是我们可以发现,每一个叶子的贡献取决于它的所有祖先的 \(nA\) 和 \(nB\) 的大小关系。这一点就不满足一般的 dp 的无后效性了。
然后我就没有办法了,开始自闭。
过了好久,拜读了一下题解,得知可以暴力枚举每一个非叶子的的情况,复杂度是可以保证的。
大概复杂度就是 \(T(m)=4T(\frac m2)+O(m^2)\)。根据主定理,\(m^2=m^{\log_2^4}=m^2\),所以总时间复杂度为 \(m^2\log m = m^2n = n^{2n}n\)。
这个故事告诉我们时间复杂度的分析还是非常重要的,一个看起来很假的做法实际上可能是对的,要注意及时分辨算法的正确性,不要被表面的现象所迷惑。
代码如下:
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
#define lc x << 1
#define rc x << 1 | 1
const int N = 2048 + 7;
const int INF = 0x7f7f7f7f;
int n, m;
int a[N], c[N], f[N][N], w[N][N], col[N], dp[N][N];
inline void dfs(int x) {
if (x >= m) {
if (a[x - m + 1]) dp[x][0] = c[x - m + 1], dp[x][1] = 0;
else dp[x][0] = 0, dp[x][1] = c[x - m + 1];
for (int i = x >> 1; i; i >>= 1) dp[x][col[i] ^ 1] += w[x][i];
return;
}
int siz = 1 << (n - std::__lg(x));
memset(dp[x], 0x7f, sizeof(int) * (siz + 1));
col[x] = 0, dfs(lc), dfs(rc);
for (int i = 0; i <= (siz >> 1); ++i)
for (int j = 0; i + j <= (siz >> 1); ++j)
smin(dp[x][i + j], dp[lc][i] + dp[rc][j]);
col[x] = 1, dfs(lc), dfs(rc);
for (int i = 0; i <= (siz >> 1); ++i)
for (int j = (siz >> 1) - i + 1; j <= (siz >> 1); ++j)
smin(dp[x][i + j], dp[lc][i] + dp[rc][j]);
}
inline void ycl() {
for (int i = 1; i <= m; ++i) {
for (int j = i + 1; j <= m; ++j) {
int x = i + m - 1, y = j + m - 1, lca = x >> (std::__lg(x ^ y) + 1);
w[x][lca] += f[i][j], w[y][lca] += f[i][j];
}
}
}
inline void work() {
ycl();
dfs(1);
int ans = INF;
for (int i = 0; i <= m; ++i) smin(ans, dp[1][i]);
printf("%d\n", ans);
}
inline void init() {
read(n), m = 1 << n;
for (int i = 1; i <= m; ++i) read(a[i]);
for (int i = 1; i <= m; ++i) read(c[i]);
for (int i = 1; i <= m; ++i)
for (int j = i + 1; j <= m; ++j)
read(f[i][j]), f[j][i] = f[i][j];
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}
bzoj1495 [NOI2006]网络收费 复杂度分析+树上背包的更多相关文章
- bzoj4007 & loj2111 [JLOI2015]战争调度 复杂度分析+树上背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4007 https://loj.ac/problem/2111 题解 同 [NOI2006]网络 ...
- BZOJ1495 [NOI2006]网络收费
题意 传送门 MY市NS中学,大概是绵阳市南山中学. 分析 参照Maxwei_wzj的题解. 因为成对的贡献比较难做,我们尝试把贡献算到每一个叶子节点上.我们发现按照题目中的收费方式,它等价于对于每棵 ...
- BZOJ1495 [NOI2006]网络收费 【树形dp + 状压dp】
题目链接 BZOJ1495 题解 观察表格,实际上就是分\(A\)多和\(B\)两种情况,分别对应每个点选\(A\)权值或者\(B\)权值,所以成对的权值可以分到每个点上 所以每个非叶节点实际对应一个 ...
- 【BZOJ1495】[NOI2006]网络收费 暴力+DP
[BZOJ1495][NOI2006]网络收费 Description 网络已经成为当今世界不可或缺的一部分.每天都有数以亿计的人使用网络进行学习.科研.娱乐等活动.然而,不可忽视的一点就是网络本身有 ...
- 洛谷 P4297 [NOI2006]网络收费
P4297 [NOI2006]网络收费 题目背景 noi2006 day1t1 题目描述 网络已经成为当今世界不可或缺的一部分.每天都有数以亿计的人使用网络进行学习.科研.娱乐等活动.然而,不可忽视的 ...
- BZOJ_1495_[NOI2006]网络收费_树形DP
BZOJ_1495_[NOI2006]网络收费_树形DP Description 网络已经成为当今世界不可或缺的一部分.每天都有数以亿计的人使用网络进行学习.科研.娱乐等活动.然而, 不可忽视的一点就 ...
- 并不对劲的[noi2006]网络收费
题目略长,就从大视野上复制了. 听上去好像费用流,然而…… ***************************表示略长的题目的分界线************************ 1495: [ ...
- 【简】题解 P4297 [NOI2006]网络收费
传送门:P4297 [NOI2006]网络收费 题目大意: 给定一棵满二叉树,每个叶节点有一个状态(0,1),任选两个叶节点,如果这两个叶节点状态相同但他们的LCA所管辖的子树中的与他们状态相同的叶节 ...
- 5.21 省选模拟赛 luogu P4297 [NOI2006]网络收费 树形dp
LINK:网络收费 还是自己没脑子. 早上思考的时候 发现树形dp不可做 然后放弃治疗了. 没有合理的转换问题的模型是我整个人最大的败笔. 暴力也值得一提 爆搜之后可以写成FFT的形式的计算贡献的方法 ...
随机推荐
- linux nginx+php源码安装
PHP安装 1)下载 wget http://cn2.php.net/distributions/php-5.6.30.tar.gz 2)解压 tar –xf php-5.6.30 3)进入目录 cd ...
- 【2019ICPC西安邀请赛】J.And And And(点分治,贡献)
题意:给定一棵n个点带边权的树,定义每条路径的值为路径上边权的异或和 如果一条路径的值为0,其对答案的贡献为所有包含这条路径的路径条数 求答案膜1e9+7 n<=1e5,0<=边权< ...
- 轮询,WebSocket和P2P--记一次QQ交谈IM
问题:
- 匿名函数 sorted() filter() map() 递归函数
一. lambda() 匿名函数 说白了,从字面理解匿名函数就是看不见的函数,那么他的看不见表现在哪里呢? 其实就是在查询的时候他们的类型都是lambda的类型所以叫匿名,只要是用匿名函数写的大家 ...
- 136、TensorFlow的Embedding lookup
import tensorflow as tf; import numpy as np; c = np.random.random([10, 1]) b = tf.nn.embedding_looku ...
- DOS 查看端口占用,Kill线程
查看端口占用 C:\Users\1>netstat -aon|findstr "8020" TCP 0.0.0.0:8020 0.0.0.0:0 LISTENING 1468 ...
- Gogs 安装 - 本地安装,容器安装
文章目录 安装 Gogs 本地安装 前提条件: 数据库 git 创建 git 用户 SSH 服务器 安装 升级 配置及运行 配置 运行 Gogs 服务 在线安装 Gogs 后台运行 gogs 通过 d ...
- Docker 官网文档翻译汇总
官方文档地址 Guide Docker 入门 Docker 入门教程 方向和设置 容器 服务 swarm 集群 stack 部署应用 概述 用 Docker 进行开发 在 Docker 上开发应用 应 ...
- 文件上传: FileItem类、ServletFileUpload 类、DiskFileItemFactory类
文件上传: ServletFileUpload负责处理上传的文件数据,并将表单中每个输入项封装成一个FileItem对象中, 在使用ServletFileUpload对象解析请求时需要根据DiskFi ...
- Mac010--IDEA安装及应用
Mac--IDEA安装及应用 应用IDEA,首先确保已安装如下环境: JDK:JDK是整个java开发的核心,它包含了JAVA的运行环境,JAVA工具和JAVA基础的类库(安装 & 配置环境变 ...