洛谷4721 【模板】分治 FFT
传送门
久违的多项式全家桶= =+
分治NTT 用的就是cdq分治的思想 对于当前递归到的区间[l,r] 我们处理出[l,mid]对[mid+1,r]答案的贡献
然后分治递归求解就可以啦qwq
这个贡献是前一半卷积的答案加过去就可以啦
对于x的贡献
附代码。
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cmath>
#define ll long long
#define mdn 998244353
#define G 3
#define mxn 200010
using namespace std;
int ksm(int bs,int mi)
{
int ans=1;
while(mi)
{
if(mi&1) ans=(ll)ans*bs%mdn;
bs=(ll)bs*bs%mdn; mi>>=1;
}
return ans;
}
int rev[mxn],inv;
int init(int n)
{
int lim=1,l=0;
while(lim<n) lim<<=1,l++;
for(int i=1;i<lim;i++)
rev[i]=(rev[i>>1]>>1)|((i&1)<<(l-1));
inv=ksm(lim,mdn-2);
return lim;
}
void NTT(int *a,int n,int f)
{
for(int i=0;i<n;i++) if(rev[i]>i) swap(a[rev[i]],a[i]);
for(int k=2;k<=n;k<<=1)
{
int Wn=ksm(G,(mdn-1)/k),mid=k>>1;
if(f) Wn=ksm(Wn,mdn-2);
for(int w=1,i=0;i<n;i+=k,w=1)
for(int j=0;j<mid;j++,w=(ll)w*Wn%mdn)
{
int x=a[i+j],y=(ll)w*a[i+mid+j]%mdn;
a[i+j]=(x+y)%mdn;
a[i+mid+j]=(x-y+mdn)%mdn;
}
}
if(f) for(int i=0;i<n;i++) a[i]=(ll)a[i]*inv%mdn;
}
int f[mxn],g[mxn],h[mxn],a[mxn],b[mxn];
void cdq(int l,int r)
{
if(l==r) return;
int mid=(l+r)>>1;
cdq(l,mid); int lim = init(r-l+1);
for(int i=0;i<=mid-l;i++) a[i]=f[l+i];
for(int i=mid-l+1;i<=lim;i++) a[i]=0;
for(int i=0;i<=r-l;i++) b[i]=g[i];
for(int i=r-l+1;i<=lim;i++) b[i]=0;
NTT(a,lim,0); NTT(b,lim,0);
for(int i=0;i<lim;i++) a[i]=(ll)a[i]*b[i]%mdn;
NTT(a,lim,1);
//for(int i=0;i<lim;i++) printf("%d ",a[i]);
for(int i=mid+1;i<=r;i++) f[i]=(ll)(f[i]+a[i-l])%mdn;
cdq(mid+1,r);
}
int n;
int main()
{
scanf("%d",&n);
for(int i=1;i<n;i++) scanf("%d",&g[i]);
f[0]=1;
cdq(0,n);
for(int i=0;i<n;i++) printf("%d ",f[i]);
return 0;
}
洛谷4721 【模板】分治 FFT的更多相关文章
- 洛谷.4721.[模板]分治FFT(NTT)
题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg ...
- 解题:洛谷4721 [模板]分治FFT
题面 这是CDQ入门题,不要被题目名骗了,这核心根本不在不在FFT上啊=.= 因为后面的项的计算依赖于前面的项,不能直接FFT.所以用CDQ的思想,算出前面然后考虑给后面的贡献 #include< ...
- 洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以 ...
- 【洛谷4721】【模板】分治FFT(CDQ分治_NTT)
题目: 洛谷 4721 分析: 我觉得这个 "分治 FFT " 不能算一种特殊的 FFT ,只是 CDQ 分治里套了个用 FFT (或 NTT)计算的过程,二者是并列关系而不是偏正 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷 4721 【模板】分治 FFT——分治FFT / 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4721 分治FFT:https://www.cnblogs.com/bztMinamoto/p/9749557.h ...
- POJ 1741.Tree and 洛谷 P4178 Tree-树分治(点分治,容斥版) +二分 模板题-区间点对最短距离<=K的点对数量
POJ 1741. Tree Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 34141 Accepted: 11420 ...
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- [洛谷P3806] [模板] 点分治1
洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果m ...
随机推荐
- JS自定义随机键盘
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Ckeditor IE下粘贴word中图片问题
自动导入Word图片,或者粘贴Word内容时自动上传所有的图片,并且最终保留Word样式,这应该是Web编辑器里面最基本的一个需求功能了.一般情况下我们将Word内容粘贴到Web编辑器(富文本编辑器) ...
- spring mvc中的@Entity是什么意思?
@Entitypublic Class JavaBean{}标注该类为实体类.
- jsc2019_qualD Classified
题目大意 给你一个有n个点的完全图 求一种方案是的给边染色后任何一点不能沿一种颜色的边走奇数条边回到这个点 要求颜色数最少 分析 考场上输出格式打错见祖宗... 我们每次找一个最大二分图将其染一个新颜 ...
- javascript-object对象属性操作之Object.defineProperty
一.基本用法简介 声明一个简单的对象,如下 var obj = { name: 'ldld' } 我们可以用Object.defineProperty来声明这个对象 var obj = {} Obje ...
- 怎样用idhttpserver代替IIS让用户浏览html或下载文件 http://bbs.csdn.net/topics/360248674
怎样用idhttpserver代替IIS让用户浏览html或下载文件 更多0分享到: 相关知识库: C# 虚拟现实(VR) Node.js 算法与数据结构 对我有用[0] 丢个板砖[0] ...
- Jmeter发送SOAP请求对WebService接口测试
Jmeter发送SOAP请求对WebService接口测试 1.测试计划中添加一个用户自定义变量 2.HTTP信息头管理器,添加Content-Tpe, application/soap+xml;c ...
- IDF-CTF-cookie欺骗 writeup
题目链接: http://ctf.idf.cn/index.php?g=game&m=article&a=index&id=40 知识点:base64解码, cookie欺骗 ...
- hashCode -哈希值,Object中的方法,常根据实际情况重写
package cn.learn.collection; import cn.learn.basic.Phone; /* 哈希值:是一个十进制的整数,由系统随机给出(就是对象的地址值),是一个逻辑地址 ...
- spring容器的启动过程
spring的启动过程: 首先,对于一个web应用,其部署在web容器中,web容器提供其一个全局的上下文环境,这个上下文就是ServletContext,其为后面的spring IoC容器提供宿主环 ...