传送门

##解题思路
  首先构造出一个生成树,考虑不连接的情况。假设连通两点的非树边和树边都断掉后不连通,那么可以给所有的非树边随机一个互不相同的值,然后树边的权值为过他两端点的非树边权值的异或和,这个可以用一个类似树上差分的东西来实现。询问的时候把所有询问的边权加到线性基里,看是否某个数字能被线性表出。

##代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<set> using namespace std;
const int N=100005;
const int M=500005;
const int INF=(1<<30); inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
} int n,m,head[N],cnt,to[N<<1],nxt[N<<1],Q,b[35],F[N];
int tag[N],tot,id[N<<1],ans;
bool flag;
set<int> S; struct Edge{
int u,v,w;
}edge[M]; inline void add(int bg,int ed,int Id){
to[++cnt]=ed,nxt[cnt]=head[bg],id[cnt]=Id,head[bg]=cnt;
} int get(int x){
if(x==F[x]) return x;
return F[x]=get(F[x]);
} void dfs(int x,int fa){
for(int i=head[x];i;i=nxt[i]){
int u=to[i]; if(u==fa) continue;
dfs(u,x);
edge[id[i]].w^=tag[u];
tag[x]^=tag[u];
}
} inline void init(){
memset(b,0,sizeof(b));
flag=false;
} inline void Insert(int x){
for(int i=30;~i;i--)
if(x&(1<<i)){
if(!b[i]) {b[i]=x; return ;}
x^=b[i];
}
if(!x) flag=1;
} int main(){
srand(time(0)); srand(rand()); srand(20020426);
n=rd(),m=rd();int x,y;
for(int i=1;i<=n;i++) F[i]=i;
for(int i=1;i<=m;i++)
edge[i].u=rd(),edge[i].v=rd();
for(int i=1;i<=m;i++){
x=get(edge[i].u); y=get(edge[i].v);
if(x==y) {
edge[i].w=rand()%INF;
while(S.find(edge[i].w)!=S.end()) edge[i].w=rand()%INF;
S.insert(edge[i].w);
tag[edge[i].u]^=edge[i].w;
tag[edge[i].v]^=edge[i].w;
continue;
}
add(edge[i].u,edge[i].v,i); add(edge[i].v,edge[i].u,i);
F[x]=y; tot++;
}
dfs(1,0); Q=rd();
while(Q--){
init();
for(x=rd();x;x--) y=(rd()^ans),Insert(edge[y].w);
if(flag) puts("Disconnected");
else puts("Connected"),ans++;
}
return 0;
}

BZOJ 3569: DZY Loves Chinese II(线性基)的更多相关文章

  1. BZOJ 3569 DZY Loves Chinese II ——线性基

    [题目分析] 腊鸡题目卡题面. 大概的意思就是给一张无向图,每次删掉其中一些边,问是否联通. 首先想到的是Bitset,可以做到n^2/64.显然过不了. 然而这是lyd在给我们讲线性基的时候的一道题 ...

  2. 【BZOJ3563/3569】DZY Loves Chinese II 线性基神题

    [BZOJ3563/3569]DZY Loves Chinese II Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以 ...

  3. BZOJ 3569 DZY Loves Chinese II 树上差分+线性基

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3569 Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅 ...

  4. BZOJ 3569: DZY Loves Chinese II [高斯消元XOR 神题]

    http://www.lydsy.com/JudgeOnline/problem.php?id=3569 题意:多次询问一个无向连通图当图中某k条边消失时这个图是否联通 强制在线 太神啦啦啦啦啦啦啦啦 ...

  5. BZOJ3569:DZY Loves Chinese II(线性基)

    Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生.   今Dzy有一魞歄图, ...

  6. BZOJ 3569 DZY Loves Chinese II

    Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生. 今Dzy有一魞歄图,其上 ...

  7. BZOJ3569: DZY Loves Chinese II(线性基构造)

    Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生.   今Dzy有一魞歄图, ...

  8. bzoj 3569 DZY Loves Chinese II 随机算法 树上倍增

    题意:给你一个n个点m条边的图,有若干组询问,每次询问会选择图中的一些边删除,删除之后问此图是否联通?询问之间相互独立.此题强制在线. 思路:首先对于这张图随便求一颗生成树,对于每一条非树边,随机一个 ...

  9. BZOJ 3563 DZY Loves Chinese

    Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生. 今Dzy有一魞歄图,其上 ...

随机推荐

  1. BZOJ 4238 电压 解题报告

    BZOJ 4238 电压 考虑一条边成为答案以后,删去Ta后剩下的图是一个或很多个二分图,即没有奇环 则一条边可以成为答案,当且仅当自己在所有奇环的交上且不在偶环上. 考虑建出dfs树,那么返祖边一定 ...

  2. delphi 一个关于xml文件导入数据库的问题

    function LoadXml(shortPath:string;var xmlobj: IXMLDOMDocument):boolean; var tmpXml:IXMLDOMDOCUMENT; ...

  3. C#后台获取post参数

    public static string GetQueryString(string key) { if (HttpContext.Current.Request[key] == null) retu ...

  4. inputAccessoryView,inputView

    我们在使用UITextView和UITextField的时候,可以通过它们的inputAccessoryView属性给输入时呼出的键盘加一个附属视图,通常是UIToolBar,用于回收键盘. 但是当我 ...

  5. 关于css3 Animation动画

    在介绍animation之前有必要先来了解一个东西,那就是“keyframes”,我们把他叫做“关键帧”: 在使用transition制作一个简单的transition效果时,包括了初始属性,最终属性 ...

  6. Nginx的作用详解

    Nginx的产生 没有听过Nginx?那么一定听过它的"同行"Apache吧!Nginx同Apache一样都是一种WEB服务器.基于REST架构风格,以统一资源描述符(Unifor ...

  7. spring data jpa 多对多查询

    package com.ytkj.dao; import com.ytkj.entity.Customer; import com.ytkj.entity.Role; import org.sprin ...

  8. 常用命令--find

    语法 find path -option [ -print ] [-exec -ok command ] {} \; find . -maxdepth 1 -type f -exec mv {} /t ...

  9. 2019年RTC大会记录

    小编近期在研究webRTC点对点通信技术,怀着学习的心态参加了2019年RTC大会,对所见所闻做下记录,不对的地方还请批评指正! 这次热门的话题是5G.WebRTC.AI对图像.音视频的相关处理,思科 ...

  10. 61.Merge k Sorted Lists(合并k个排序链表)

    Level:   Hard 题目描述: Merge k sorted linked lists and return it as one sorted list. Analyze and descri ...