原题链接

2300分

大意

俄罗斯套娃,每个有内容半径in和外围半径out

in_i<out_i

如果 in_i >= out_j ,那么j可以放在i内

定义残留空间 = 一列嵌套的套娃 未使用的半径和 ,如 {1,2},{2,5},{7,9},未使用的白净和为(1-0)+(2-2)+(7-5) = 3

有效残留空间,如果 一列嵌套的套娃,还能从给出的套娃中选择一个加入这一列,那么原本的残留空间为无效值。如给{1,2},{2,3},{2,5},{7,9},只选择{1,2},{7,9}是无效的嵌套列,而选择{1,2},{2,3},{7,9}是有效的

令M = 最小的有效残留空间

求有效残留空间=M的方案数 % MOD

数据范围

套娃个数<= 200'000

半径<=1'000'000'000

MOD = 1'000'000'007

题解 翻译自官方题解

赛内我写了大概十多分钟没写出来,算法是想到n方的 但是没想到怎么优化到时间复杂度内

https://codeforces.com/blog/entry/68615

首先我们 把它们按照内半径排序in_i,

dp[i] = {x,y} 从末尾到第i个,最小的有效残留空间x, 这样的情况下的方案数 y

dp[i] = {in_i,1} 如果没有 能套在i外面的

如果有能套在i外面的j 那么

dp[i].x = min(d[j].x - (out_i-in_i)) = min(d[j].x) - (out_i-in_i)

我自己考虑漏的一点,假设 我们在尝试i了,那么min[d[ all j such in_j>=out_i ].x] 对于>=i 来说,一定是有效的,当时考虑漏了,在想怎么维护左右游标,来计算有效范围内的最小值

反证法

因为我们 要把i放在j内,如果不是有效的,

首先我们的dp定义保证了 不会插入其它在j以后

那么意味着,在i和j之间还能插入其它,假设为k

那么有d[k].x < d[j].x 和我们刚刚假设的min矛盾

综上

读入O(n)

排序O(n log n)

维护一个minx数组

每次计算dp[i] 二分>=out_i的坐标,计算完后更新minx 每次O(log n)

总共O(n log n)

代码 (Rust)

https://codeforces.com/contest/1197/submission/57928269

#![allow(unused_imports)]
use std::cmp::*;
use std::collections::*;
use std::ops::Bound::*; struct Scanner {
buffer : std::collections::VecDeque<String>
} impl Scanner { fn new() -> Scanner {
Scanner {
buffer: std::collections::VecDeque::new()
}
} fn next<T : std::str::FromStr >(&mut self) -> T { if self.buffer.len() == 0 {
let mut input = String::new();
std::io::stdin().read_line(&mut input).ok();
for word in input.split_whitespace() {
self.buffer.push_back(word.to_string())
}
} let front = self.buffer.pop_front().unwrap();
front.parse::<T>().ok().unwrap()
}
} fn main() {
const MOD:i32 = 1_000_000_007;
let mut s = Scanner::new();
let n : usize = s.next();
let mut arr:Vec<(i32,i32)> = Vec::new();
for _i in 0..n {
let out_i: i32 = s.next();
let in_i: i32 = s.next();
arr.push((in_i,out_i));
}
arr.sort();
let mut minx:BTreeMap<i32,(i32,i32)> = BTreeMap::new(); // (in>=, (mincost,cnt))
let mut ans:i32 = 0;
for i in arr.iter().rev() {
let out_i = i.1;
let in_i = i.0; // 二分找到 >= out_i 的minx
//
let bin_res:(i32,i32) = match minx.range((Included(&out_i), Unbounded)).next() {
Some(val) => *(val.1),
None => (out_i,1)
}; let cost = (bin_res.0 - (out_i - in_i), bin_res.1);
// 获取当前>=in_i 的 minx 如果没有则是 0 let cur = match minx.range((Included(&in_i), Unbounded)).next() {
Some(val) => *(val.1),
None => (cost.0,0)
}; let count = minx.entry(in_i).or_insert(cur);
if count.0 > cost.0 {
ans = cost.1;
(*count) = cost;
} else if count.0 == cost.0 {
(*count).1 += cost.1;
(*count).1 %= MOD;
ans = (*count).1;
}
// println!("{:?} {:?}", i , count);
}
println!("{}",ans );
}

总结

最近在看Rust,想说 这lower_bound 用range来写,写得我自闭,但是回过头来看

感觉用match比c++写 成lower_bound 再判断是否等于.end()更加清晰

再比如 下面

entry+or_insert这里

最开始我的两个if里分别时minx.insert和count操作,这样 连编译都通不过,因为一个变量不允许同时 两个mutable

此外 赞美一下 .0,.1相对于 c++中的 .first,.second或者说 get<0>(...),get<1>(...)

简洁而不失去意义

Codeforces 1197 E (dp+sort+二分) (Rust)的更多相关文章

  1. Codeforces 830A. Office Keys (贪心二分 or DP)

    原题链接:http://codeforces.com/contest/830/problem/A 题意:在一条数轴上分别有n个人和k把钥匙(n<=k),以及一个目的地,每个人要各自拿到一个钥匙后 ...

  2. codeforces 487B B. Strip(RMQ+二分+dp)

    题目链接: B. Strip time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  3. Codeforces 865C Gotta Go Fast 二分 + 期望dp (看题解)

    第一次看到这种骚东西, 期望还能二分的啊??? 因为存在重置的操作, 所以我们再dp的过程中有环存在. 为了消除环的影响, 我们二分dp[ 0 ][ 0 ]的值, 与通过dp得出的dp[ 0 ][ 0 ...

  4. Codeforces 749E Gosha is hunting 二分+DP

    很神奇的一题 看完题解不由惊叹 题意:$n$个神奇宝贝 $a$个普通球 $b$个高级球 普通球抓住$i$神奇宝贝的概率为$u[i]$ 高级球为$p[i]$ 一起用为$u[i]+p[i]-u[i]*p[ ...

  5. CodeForces - 847B Preparing for Merge Sort 二分

    http://codeforces.com/problemset/problem/847/B 题意:给你n个数(n<2e5)把它们分成若干组升序的子序列,一行输出一组.分的方法相当于不断找最长递 ...

  6. codeforces 459E E. Pashmak and Graph(dp+sort)

    题目链接: E. Pashmak and Graph time limit per test 1 second memory limit per test 256 megabytes input st ...

  7. codeforces 666A (DP)

    题目链接:http://codeforces.com/problemset/problem/666/A 思路:dp[i][0]表示第a[i-1]~a[i]组成的字符串是否可行,dp[i][1]表示第a ...

  8. CodeForces 377B---Preparing for the Contest(二分+贪心)

    C - Preparing for the Contest Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d ...

  9. Codeforces 484B Maximum Value(高效+二分)

    题目链接:Codeforces 484B Maximum Value 题目大意:给定一个序列,找到连个数ai和aj,ai%aj尽量大,而且ai≥aj 解题思路:类似于素数筛选法的方式,每次枚举aj,然 ...

随机推荐

  1. 《剑指offer》面试题14 调整数组顺序使奇数位于偶数前面 Java版

    (输入整数数组,使所有奇数位于前半部分,所有偶数位于后半部分.) 我的方法:想到用两个下标分别表示奇数和偶数的界线,一个在开头,一个在末尾,判断每一个数字的类别,然后将它放入对应的范围内,移动下标,直 ...

  2. dfs(枚举)

    http://codeforces.com/gym/100989/problem/L L. Plus or Minus (A) time limit per test 1.0 s memory lim ...

  3. Vue基于vuex、axios拦截器实现loading效果及axios的安装配置

    准备 利用vue-cli脚手架创建项目 进入项目安装vuex.axios(npm install vuex,npm install axios) axios配置 项目中安装axios模块(npm in ...

  4. 计算机体系结构——流水线技术(Pipelining)

    本文导读: 一.并行技术 .并行技术分类 .新技术的设计与实现 .指令周期 二.流水线技术 .什么是流水线 .指令重叠方式 .流水工作设计 .流水线的描述方法(时空图) .流水线特点 三.流水线的分类 ...

  5. BUUCTF--findit

    测试文件:https://buuoj.cn/files/7b8602971727c6c82ec0d360d5cad2c0/6a428ff2-25d7-403c-b28e-3f980a10a5a2.ap ...

  6. mysql的sql语句优化方法面试题总结

    mysql的sql语句优化方法面试题总结 不要写一些没有意义的查询,如需要生成一个空表结构: select col1,col2 into #t from t where 1=0 这类代码不会返回任何结 ...

  7. mysql中,表与表之间的关系

     """ 1.字段的修改.添加.删除 2.多表关系(外键) 3.单表详细操作:增删改,查(各种条件) """ 字段操作  create ta ...

  8. centos误删除文件如何恢复

    当意识到误删除文件后,切忌千万不要再频繁写入了,否则你的数据恢复的数量将会很少. 而我们要做的是,第一时间把服务器上的服务全部停掉,直接killall 进程名 或者 kill -9 pid . 然后把 ...

  9. DDD领域驱动设计初探(一):聚合

    前言:又有差不多半个月没写点什么了,感觉这样很对不起自己似的.今天看到一篇博文里面写道:越是忙人越有时间写博客.呵呵,似乎有点道理,博主为了证明自己也是忙人,这不就来学习下DDD这么一个听上去高大上的 ...

  10. 英国已有500万宽带用户接入并开始使用IPv6技术

    2018年英国首家为客户提供IPv6的主要ISP.随着所有现有的符合条件的用户线路启用,约90%的固定宽带用户群接入并开始使用IPv6,为IPv6互联网增加了超过500万个新眼球. 英国IPv6项目于 ...