POJ 1269 Intersecting Lines (判断直线位置关系)
题目链接:POJ 1269
Problem Description
We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000.
Input
The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).
Output
There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".
Sample Input
5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5
Sample Output
INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT
Solution
题意
\(n\) 组样例。每组样例给定两条直线,判断直线是平行,重合还是相交。若相交求交点。
题解
叉积
- 判断共线:
若 \(\boldsymbol{ab}\) 与 \(\boldsymbol{cd}\) 共线,则 \(\boldsymbol{ab} \times \boldsymbol{cd} = 0\)。
- 判断重合:
若 \(\boldsymbol{ab}\) 与 \(\boldsymbol{cd}\) 重合,则 \(\boldsymbol{bc} \times \boldsymbol{ad} = 0\)。
- 判断平行:
共线且不重合。
- 求交点:
首先要满足相交。
如上图,求 \(\boldsymbol{AB}\) 与 \(\boldsymbol{CD}\) 的交点 \(E\)。
\]
\]
设原点为 \(O\),则
\]
\(\boldsymbol{OE}\) 即为点 \(E\) 的坐标。
Code
#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long ll;
typedef double db;
const db eps = 1e-10;
const db pi = acos(-1.0);
const ll inf = 0x3f3f3f3f3f3f3f3f;
const ll maxn = 1e5 + 10;
inline int dcmp(db x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
}
class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
void input() {
scanf("%lf%lf", &x, &y);
}
bool operator<(const Point &a) const {
return (!dcmp(x - a.x))? dcmp(y - a.y) < 0: x < a.x;
}
bool operator==(const Point &a) const {
return dcmp(x - a.x) == 0 && dcmp(y - a.y) == 0;
}
db dis2(const Point a) {
return pow(x - a.x, 2) + pow(y - a.y, 2);
}
db dis(const Point a) {
return sqrt(dis2(a));
}
db dis2() {
return x * x + y * y;
}
db dis() {
return sqrt(dis2());
}
Point operator+(const Point a) {
return Point(x + a.x, y + a.y);
}
Point operator-(const Point a) {
return Point(x - a.x, y - a.y);
}
Point operator*(double p) {
return Point(x * p, y * p);
}
Point operator/(double p) {
return Point(x / p, y / p);
}
db dot(const Point a) {
return x * a.x + y * a.y;
}
db cross(const Point a) {
return x * a.y - y * a.x;
}
};
typedef Point Vector;
class Line {
public:
Point s, e;
Line() {}
Line(Point s, Point e) : s(s), e(e) {}
void input() {
scanf("%lf%lf%lf%lf", &s.x, &s.y, &e.x, &e.y);
}
int toLeftTest(Point p) {
if((e - s).cross(p - s) > 0) return 1;
else if((e - s).cross(p - s) < 0) return -1;
return 0;
}
// 共线
bool collinear(Line l) {
if(dcmp((e - s).cross(l.e - l.s)) == 0) {
return 1;
}
return 0;
}
// 同线
bool same(Line l) {
if(dcmp((l.s - e).cross(l.e - s)) == 0) {
return 1;
}
return 0;
}
// 平行
bool parallel(Line l) {
return collinear(l) && (!same(l));
}
// 直线与直线交点
Point crosspoint(Line l) {
double a1 = (l.e - l.s).cross(s - l.s);
double a2 = (l.e - l.s).cross(e - l.s);
Point ans = s + (e - s) * (-a1) / (a2 - a1);
if(dcmp(ans.x) == 0) ans.x = 0;
if(dcmp(ans.y) == 0) ans.y = 0;
return ans;
}
// 直线与直线位置关系 0-重合 1-平行 2-相交
int linecrossline (Line l) {
if(dcmp((e - s).cross(l.e - l.s)) == 0) {
if(dcmp((l.s - e).cross(l.e - s)) == 0) {
return 0;
}
return 1;
}
return 2;
}
};
Line l1, l2;
int main() {
int T;
scanf("%d", &T);
printf("INTERSECTING LINES OUTPUT\n");
while(T--) {
l1.input();
l2.input();
if(l1.linecrossline(l2) == 0) {
printf("LINE\n");
} else if(l1.linecrossline(l2) == 1) {
printf("NONE\n");
} else {
Point ans = l1.crosspoint(l2);
printf("POINT %.2lf %.2lf\n", ans.x, ans.y);
}
}
printf("END OF OUTPUT\n");
return 0;
}
POJ 1269 Intersecting Lines (判断直线位置关系)的更多相关文章
- POJ 1269 Intersecting Lines(直线相交判断,求交点)
Intersecting Lines Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8342 Accepted: 378 ...
- poj 1269 Intersecting Lines(判断两直线关系,并求交点坐标)
Intersecting Lines Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 12421 Accepted: 55 ...
- POJ 1269 Intersecting Lines(直线求交点)
Description We all know that a pair of distinct points on a plane defines a line and that a pair of ...
- POJ 1269 Intersecting Lines 判断两直线关系
用的是初中学的方法 #include <iostream> #include <cstdio> #include <cstring> #include <al ...
- POJ 1269 Intersecting Lines(判断两直线位置关系)
题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...
- 判断两条直线的位置关系 POJ 1269 Intersecting Lines
两条直线可能有三种关系:1.共线 2.平行(不包括共线) 3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...
- 简单几何(直线位置) POJ 1269 Intersecting Lines
题目传送门 题意:判断两条直线的位置关系,共线或平行或相交 分析:先判断平行还是共线,最后就是相交.平行用叉积判断向量,共线的话也用叉积判断点,相交求交点 /********************* ...
- POJ 1269 Intersecting Lines【判断直线相交】
题意:给两条直线,判断相交,重合或者平行 思路:判断重合可以用叉积,平行用斜率,其他情况即为相交. 求交点: 这里也用到叉积的原理.假设交点为p0(x0,y0).则有: (p1-p0)X(p2-p0) ...
- POJ 1269 - Intersecting Lines 直线与直线相交
题意: 判断直线间位置关系: 相交,平行,重合 include <iostream> #include <cstdio> using namespace std; str ...
随机推荐
- js事件冒泡、事件捕获
事件冒泡 var box = document.querySelector('.box'); var content = document.querySelector('.content'); doc ...
- Django框架(二十一)—— Django rest_framework-权限组件
目录 Django rest_framework-权限组件 一.权限组件的使用 1.使用语法 2.全局使用.局部使用.局部禁用权限 二.源码分析 1.Book中没有as_view 2.APIView的 ...
- LeetCode Array Easy 66. Plus One
Description Given a non-empty array of digits representing a non-negative integer, plus one to the i ...
- 文件对比工具 diff cmp patch(没弄完) pr
diff不仅可以对比文件,而且可以对比文件夹中的文件. 解析: diff用在比对两个文件的差异,并且是以行为单位进行对比.一般用在ascii纯文本档的对比上. 例 在tmp中创建一个testpw文件夹 ...
- linux网络配置 转
1.常用配置网络指令 (1) 配置eth0的IP地址, 同时激活该设备 1 sudo ifconfig eth0 192.168.1.10 netmask 255.255.255.0 up (2) 添 ...
- 杭电多校第六场-J-Ridiculous Netizens
Problem Description Mr. Bread has a tree T with n vertices, labeled by 1,2,…,n. Each vertex of the t ...
- 最详细的 Android Toolbar 开发实践总结(转)
转自:http://www.codeceo.com/article/android-toolbar-develop.html 过年前发了一篇介绍 Translucent System Bar 特性的文 ...
- vue ui 开启无效记录
换了台电脑,输入vue ui 无法开启图形化界面 1.首先vue ui 没成功 我找到vue.cmd路径配置到环境变量依旧没有解决 然后使用vue -h 显示没有vue ui这个命令 重新安装npm ...
- js 连等操作,,
奥术大师 var hu = { a : , c : , name : }; (function (){ var ccc = bbb = aaa = hu; })() console.log(bbb)* ...
- git命令的基本使用
git init 创建仓库 git status 查看当前版本库的状态 git add filename 使用git add命令告诉git,把该文件添加到仓库 git commit -m 'c ...