Directed Roads CodeForces - 711D (基环外向树 )
ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from 1 to n.
There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.
ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.
Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.
Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.
Input
The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.
The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i), ai denotes a road going from town i to town ai.
Output
Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.
Examples
Input
3
2 3 1
Output
6
Input
4
2 1 1 1
Output
8
Input
5
2 4 2 5 3
Output
28
Note
Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are , , initially. Number the roads 1 to 3 in this order.
The sets of roads that ZS the Coder can flip (to make them not confusing) are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns 1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.
The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.
题意:
思路:
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
inline void getInt(int* p);
const int maxn=1000010;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
std::vector<int> son[maxn];
int n;
int depth[maxn];
bool vis[maxn];
ll num=0ll;
int flag=1;
void dfs(int id,int pre,int step)
{
vis[id]=1;
depth[id]=step;
for(auto x:son[id])
{
if(x!=pre)
{
if(vis[x]&&flag)
{
num=depth[id]-depth[x]+1ll;
flag=0;
}
if(!vis[x])
dfs(x,id,step+1);
}
if(x==pre)
{
pre=-1;
}
}
}
const ll mod=1e9+7;
int far[maxn];
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
gbtb;
cin>>n;
int x;
repd(i,1,n)
{
cin>>x;
son[x].pb(i);
son[i].pb(x);
}
ll temp=n;
ll ans=1ll;
repd(i,1,n)
{
if(!vis[i])
{
flag=1;
dfs(i,-1,0);
temp-=num;
ans=(ans*((powmod(2ll,num,mod)-2ll+mod)%mod))%mod;
}
}
ans=(ans*(powmod(2ll,temp,mod)))%mod;
cout<<ans<<endl;
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Directed Roads CodeForces - 711D (基环外向树 )的更多相关文章
- codeforces 875F(基环外向树)
题意 有一个左边m个点,右边n个点的二分图(n,m<=1e5),左边每个点向右边恰好连两条权值相同的边. 求这个二分图的最优匹配 分析 对于这种二选一问题,即左边的a连向右边的b和c,权值为d, ...
- bzoj 1040 [ZJOI2008]骑士(基环外向树,树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1040 [题意] 给一个基环森林,每个点有一个权值,求一个点集使得点集中的点无边相连且权 ...
- [BZOJ 1040] [ZJOI2008] 骑士 【基环+外向树DP】
题目链接:BZOJ - 1040 题目分析 这道题目的模型就是一个图,不一定联通,每个连通块的点数等于边数. 每个连通块都是一个基环+外向树.即树上增加了一条边. 如果是树,就可以直接树形DP了.然而 ...
- [bzoj] 1040 骑士 || 基环外向树dp
原题 给出n个点n条边和每个点的点权,一条边的两个断点不能同时选择,问最大可以选多少. //图是一张基环外向树森林 是不是很像舞会啊- 就是多了一条边. 所以我们考虑一下对于一棵基环外向树,拆掉一条在 ...
- 初涉基环外向树dp&&bzoj1040: [ZJOI2008]骑士
基环外向树dp竟然如此简单…… Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发 ...
- BZOJ1040 骑士 基环外向树
1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 6421 Solved: 2544[Submit][Status ...
- 【BZOJ1040】[ZJOI2008] 骑士(基环外向树DP)
点此看题面 大致题意: 给你一片基环外向树森林,如果选定了一个点,就不能选择与其相邻的节点.求选中点的最大权值和. 树形\(DP\) 此题应该是 树形\(DP\) 的一个升级版:基环外向树\(DP\) ...
- 洛谷 2921 记忆化搜索 tarjan 基环外向树
洛谷 2921 记忆化搜索 tarjan 传送门 (https://www.luogu.org/problem/show?pid=2921) 做这题的经历有点玄学,,起因是某个random题的同学突然 ...
- 1040: [ZJOI2008]骑士~基环外向树dp
Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里,在和平环境中 ...
随机推荐
- LeetCode 516——最长回文子序列
1. 题目 2. 解答 与最长回文子串类似,我们可以用动态规划来求解这个问题,只不过这里的子序列可以不连续.我们定义状态 state[i][j] 表示子串 s[i, j] 的最长回文子序列长度,那么状 ...
- leetcode 分割回文串
这个方法有问题,这是计算所有子串组成的所有回文子串:而不是所有分割的回文子串: class Solution { public: vector<vector<string>> ...
- Android 中数据存储方式有哪些?
a) 文件存储b) xml,SharedPreferencec) SQLite数据库d) ContentProvidere) 网络
- springboot2.0+swagger集成
场景:项目中添加Swagger配置,可以加速项目的开发,在快速开发项目中十分重要. 1.pom.xml添加swagger <!--swagger --> <dependency> ...
- 再谈 Devstack(Rocky)
目录 文章目录 目录 前言 网络拓扑 运行环境 要点 步骤 前言 之前写过一篇<Openstack 实现技术分解 (1) 开发环境 - Devstack 部署案例详解>,随着 Devsta ...
- Selenium 2自动化测试实战3(函数、类和方法)
一.函数.类和方法1.函数在python中通过def关键字来定义函数 创建一个add()函数,此函数接收两个参数a,b,通过print()打印a+b的结果.调用add()函数,并且上传两个参数3,5给 ...
- Elasticsearch 6.2.3版本 Windows环境 简单操作
背景描述 Elasticsearch是一个基于Apache Lucene(TM)的开源搜索引擎.无论在开源还是专有领域,Lucene可以被认为是迄今为止最先进.性能最好的.功能最全的搜索引擎库. El ...
- 部署php程序报错:站点已关闭
场景: 之前把公司线上的php源码包拿到笔记本的虚拟机上测试部署,部署完成后通过浏览器访问总是出现站点已关闭 原因:把线上php程序配置文件config.php里面的数据库连接信息改成了笔记本虚拟机的 ...
- AJAX中同步和异步的区别和使用场景
一.简介Ajax请求最重要的问题是代码执行的顺序.最长遇到的问题是,我们定义一个变量接收ajax异步请求的返回结果,后续代码使用,然而后续代码在使用时该变量为初始值,始终得不到想要的结果!!!二.示例 ...
- 【AI-人工智能-mmdetection】ModuleNotFoundError: No module named 'mmdet.version'
在集成 mmdetection 框架时遇到这样的问题. ModuleNotFoundError: No module named 'mmdet.version' mmdetection 框架搭建过程很 ...