Directed Roads CodeForces - 711D (基环外向树 )
ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from 1 to n.
There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.
ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.
Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.
Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.
Input
The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.
The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i), ai denotes a road going from town i to town ai.
Output
Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.
Examples
Input
3
2 3 1
Output
6
Input
4
2 1 1 1
Output
8
Input
5
2 4 2 5 3
Output
28
Note
Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are , , initially. Number the roads 1 to 3 in this order.
The sets of roads that ZS the Coder can flip (to make them not confusing) are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns 1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.
The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.
题意:
思路:
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
inline void getInt(int* p);
const int maxn=1000010;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
std::vector<int> son[maxn];
int n;
int depth[maxn];
bool vis[maxn];
ll num=0ll;
int flag=1;
void dfs(int id,int pre,int step)
{
vis[id]=1;
depth[id]=step;
for(auto x:son[id])
{
if(x!=pre)
{
if(vis[x]&&flag)
{
num=depth[id]-depth[x]+1ll;
flag=0;
}
if(!vis[x])
dfs(x,id,step+1);
}
if(x==pre)
{
pre=-1;
}
}
}
const ll mod=1e9+7;
int far[maxn];
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
gbtb;
cin>>n;
int x;
repd(i,1,n)
{
cin>>x;
son[x].pb(i);
son[i].pb(x);
}
ll temp=n;
ll ans=1ll;
repd(i,1,n)
{
if(!vis[i])
{
flag=1;
dfs(i,-1,0);
temp-=num;
ans=(ans*((powmod(2ll,num,mod)-2ll+mod)%mod))%mod;
}
}
ans=(ans*(powmod(2ll,temp,mod)))%mod;
cout<<ans<<endl;
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Directed Roads CodeForces - 711D (基环外向树 )的更多相关文章
- codeforces 875F(基环外向树)
题意 有一个左边m个点,右边n个点的二分图(n,m<=1e5),左边每个点向右边恰好连两条权值相同的边. 求这个二分图的最优匹配 分析 对于这种二选一问题,即左边的a连向右边的b和c,权值为d, ...
- bzoj 1040 [ZJOI2008]骑士(基环外向树,树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1040 [题意] 给一个基环森林,每个点有一个权值,求一个点集使得点集中的点无边相连且权 ...
- [BZOJ 1040] [ZJOI2008] 骑士 【基环+外向树DP】
题目链接:BZOJ - 1040 题目分析 这道题目的模型就是一个图,不一定联通,每个连通块的点数等于边数. 每个连通块都是一个基环+外向树.即树上增加了一条边. 如果是树,就可以直接树形DP了.然而 ...
- [bzoj] 1040 骑士 || 基环外向树dp
原题 给出n个点n条边和每个点的点权,一条边的两个断点不能同时选择,问最大可以选多少. //图是一张基环外向树森林 是不是很像舞会啊- 就是多了一条边. 所以我们考虑一下对于一棵基环外向树,拆掉一条在 ...
- 初涉基环外向树dp&&bzoj1040: [ZJOI2008]骑士
基环外向树dp竟然如此简单…… Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发 ...
- BZOJ1040 骑士 基环外向树
1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 6421 Solved: 2544[Submit][Status ...
- 【BZOJ1040】[ZJOI2008] 骑士(基环外向树DP)
点此看题面 大致题意: 给你一片基环外向树森林,如果选定了一个点,就不能选择与其相邻的节点.求选中点的最大权值和. 树形\(DP\) 此题应该是 树形\(DP\) 的一个升级版:基环外向树\(DP\) ...
- 洛谷 2921 记忆化搜索 tarjan 基环外向树
洛谷 2921 记忆化搜索 tarjan 传送门 (https://www.luogu.org/problem/show?pid=2921) 做这题的经历有点玄学,,起因是某个random题的同学突然 ...
- 1040: [ZJOI2008]骑士~基环外向树dp
Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里,在和平环境中 ...
随机推荐
- redis cluster 集群 安装 配置 详解
redis cluster 集群 安装 配置 详解 张映 发表于 2015-05-01 分类目录: nosql 标签:cluster, redis, 安装, 配置, 集群 Redis 集群是一个提供在 ...
- linux:vi替换命令
linux:vi替换命令 vi/vim 中可以使用 :s 命令来替换字符串.以前只会使用一种格式来全文替换,今天发现该命令有很多种写法(vi 真是强大啊,还有很多需要学习),记录几种在此,方便以后查询 ...
- harbor扩容
1.参照文档 https://k8s.abcdocker.com/kubernetes_harbor.html 2.设置连接 ln到其他文件目录下
- js实现动画(移动方块)
1.使方块移动 源码 : <script type="text/javascript"> var div = document.createElement('di ...
- Python_Onlineh_Hmework(基础篇,持续更新中...)
1 递归 1.1 定义一个函数,求一个数的阶乘 def func(x): if x == 2: return 2 else: return x*func(x-1) a = func(4) print( ...
- node项目自动化部署--基于Jenkins,Docker,Github(2)配置节点
上一篇文章中准备工作已经完成的差不多了 这一篇主要讲解 Jenkins 上面的相关配置 为了让代码部署到所有的子节点上 所以我们首先需要在 Jenkins 中添加我们希望代码部署到的节点 配置节点 首 ...
- Linux免密登陆设置了免密登陆为啥还需要输入密码
一.设置了免密码登陆但是还是需要输入密码: 权限保证:1.authorized-keys 的权限为 600 2.home.账户所在的目录如hadoop..ssh这三个文件的权限都必须设置为700,缺少 ...
- Linux如何查看进程是否启动,查看端口占用
Linux系统中经常需要查看某个进程是否已经启动,启动位置在哪里,某个端口是否被占用,被哪个进程占用等,这些都可以通过命令来完成,本文讲述如何查看进程是否启动,查看端口占用 1.通过ps -ef | ...
- 通过yum安装maven
安装maven wget http://repos.fedorapeople.org/repos/dchen/apache-maven/epel-apache-maven.repo -O /etc/y ...
- RabbitMQ入门教程(十四):RabbitMQ单机集群搭建
原文:RabbitMQ入门教程(十四):RabbitMQ单机集群搭建 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://b ...