1.hadoop集群规化

ip 主机名 安装软件 角色 运行进程
10.124.147.22 hadoop1 jdk、zookeeper、hadoop namenode/zookeeper/jobhistoryserver DFSZKFailoverController、NameNode、JobHistoryServer、QuorumPeerMain
10.124.147.23 hadoop2 jdk、zookeeper、hadoop namenode/zookeeper DFSZKFailoverController、NameNode、QuorumPeerMain
10.124.147.32 hadoop3 jdk、zookeeper、hadoop resourcemanager/zookeeper ResourceManager、QuorumPeerMain
10.124.147.33 hadoop4 jdk、zookeeper、hadoop resourcemanager/zookeeper ResourceManager、QuorumPeerMain
10.110.92.161 hadoop5 jdk、hadoop datanode/journalnode NodeManager、JournalNode、DataNode
10.110.92.162 hadoop6 jdk、hadoop datanode/journalnode NodeManager、JournalNode、DataNode
10.122.147.37 hadoop7 jdk、hadoop datanode/journalnode NodeManager、JournalNode、DataNode

2.基本环境

system os: centos 6.5

hadoop: 2.7.3

zoopkeeper: 3.4.12

jdk: 1.8.0

3.环境准备

3.1 hosts设定

[root@10-124-147-23 local]# cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
10.124.147.22 hadoop1 10-124-147-22
10.124.147.23 hadoop2 10-124-147-23
10.124.147.32 hadoop3 10-124-147-32
10.124.147.33 hadoop4 10-124-147-33
10.110.92.161 hadoop5 10-110-92-161
10.110.92.162 hadoop6 10-110-92-162
10.122.147.37 hadoop7 10-122-147-37

在此需要注意两点

  1. 127.0.0.1之后不要有主机名,比如上面的10-124-147-22的
  2. 最好将ipv6地址栏的localhosts删除
  3. 此处除了hadoop1之外,我还设定了10-124-147-22,是因为不想更改主机名,实际实际的时候,直接进行hostname更改即可

3.2 java环境安装

3.2.1 jdk安装包解压
[root@10-124-147-23 letv]# tar xvf jdk-8u141-linux-x64.tar.gz
[root@10-124-147-23 letv]# ln -svfn /letv/jdk1.8.0_141 /usr/local/java
3.2.2 profile环境的变更
[root@10-124-147-23 letv]# tail -3 /etc/profile
export JAVA_HOME=/usr/local/java
export HADOOP_HOME=/usr/local/hadoop
export PATH=$HADOOP_HOME/bin:$JAVA_HOME/bin:$PATH [root@10-124-147-23 letv]# source /etc/profile

3.3 zookeeper集群的安装

3.3.1 zookeeper安装包的解压
[root@10-124-147-23 letv]# tar xvf zookeeper-3.4.12.tar.gz
[root@10-124-147-23 letv]# ln -svnf /letv/zookeeper-3.4.12 /usr/local/zookeeper
[root@10-124-147-23 letv]# cd /usr/local/zookeeper/conf
[root@10-124-147-23 conf]# ll
total 16
-rw-rw-r-- 1 1000 1000 535 Mar 27 12:32 configuration.xsl
-rw-rw-r-- 1 1000 1000 2161 Mar 27 12:32 log4j.properties
-rw-rw-r-- 1 1000 1000 922 Mar 27 12:32 zoo_sample.cfg
[root@10-124-147-23 conf]# cp zoo_sample.cfg zoo.cfg
3.3.2 zoo.cfg配置文件修改
[root@10-124-147-23 conf]# grep  ^[^#] zoo.cfg
tickTime=2000
initLimit=10
syncLimit=5
dataDir=/usr/local/zookeeper/data
clientPort=2181
server.1=hadoop1:2888:3888
server.2=hadoop2:2888:3888
server.3=hadoop3:2888:3888
server.4=hadoop4:2888:3888

修改dataDir值,因为同时要建立zookeeper集群,下面写下对应的server地址

[root@10-124-147-23 conf]# echo 1 > /usr/local/zookeeper/data/myid

将当前主机在zookeeper集群中的id值写入,然后启动zookeeper

3.3.3 启动zookeeper
[root@10-124-147-23 bin]# pwd
/usr/local/zookeeper/bin
[root@10-124-147-23 bin]# ./zkServer.sh start

同理,启动其它主机的zookeeper,操作同上,唯一区别的就是/usr/local/zookeeper/data/myid中的值,需要彼此不一样

3.3.4 查看zookeeper状态
[root@10-124-147-23 bin]# ./zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /usr/local/zookeeper/bin/../conf/zoo.cfg
Mode: follower [root@10-124-147-33 ~]# /usr/local/zookeeper/bin/zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /usr/local/zookeeper/bin/../conf/zoo.cfg
Mode: leader

4.hadoop的安装

hadoop2.0官方提供了两种HDFS HA的解决方案,一种是NFS,另一种是QJM。这里我们使用简单的QJM。在该方案中,主备NameNode之间通过一组JournalNode同步元数据信息,一条数据只要成功写入多数JournalNode即认为写入成功。JournalNode的个数需要为奇数个

4.1 hadoop解压
[root@10-124-147-33 letv]# tar xvf hadoop-2.7.6.tar.gz
[root@10-124-147-23 ~]# ln -svnf /letv/hadoop-2.7.6 /usr/local/hadoop
4.2 hadoop环境

本次安装hadoop,只需要指定java环境和hadoop环境即可,因为zookeeperhadoop都需要运行java环境,上述安装环境已经指定

[root@10-124-147-23 letv]# tail -3 /etc/profile
export JAVA_HOME=/usr/local/java
export HADOOP_HOME=/usr/local/hadoop
export PATH=$HADOOP_HOME/bin:$JAVA_HOME/bin:$PATH
4.3 hadoop配置文件的修改

hadoop配置文件位于etc/hadoop目录之下,主要控制文件有以下6个

4.3.1 hadoop-env.sh
[root@10-124-147-23 ~]# grep JAVA_HOME /usr/local/hadoop/etc/hadoop/hadoop-env.sh
# The only required environment variable is JAVA_HOME. All others are
# set JAVA_HOME in this file, so that it is correctly defined on
export JAVA_HOME=/usr/local/java

此处需要指向java环境的实际路径,不能直接使用${JAVA_HOME}来指定,此处并不能直接识别此变量,具体原因未知。

4.3.2 hdfs-site.xml
[root@10-124-147-23 ~]# cat /usr/local/hadoop/etc/hadoop/hdfs-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<!-- Put site-specific property overrides in this file. -->
<configuration>
<!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>ns1</value>
</property> <!-- ns1下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.ns1</name>
<value>nn1,nn2</value>
</property> <!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns1.nn1</name>
<value>hadoop1:9000</value>
</property> <!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns1.nn1</name>
<value>hadoop1:50070</value>
</property> <!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns1.nn2</name>
<value>hadoop2:9000</value>
</property> <!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns1.nn2</name>
<value>hadoop2:50070</value>
</property> <!-- 指定NameNode的元数据在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://hadoop5:8485;hadoop6:8485;hadoop7:8485/ns1</value>
</property> <!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/usr/local/hadoop/data/journaldata</value>
</property> <!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property> <!-- 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.ns1</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property> <!-- 配置隔离机制方法,多个机制用换行分割,即每个机制占用一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
shell(/bin/true)
</value>
</property> <!-- 使用sshfence隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/hadoop/.ssh/id_rsa</value>
</property> <!-- 配置sshfence隔离机制超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
</configuration>

在hadoop 3中,hdfs的web通讯端口50070 已经变更为9870

4.3.3 mapred-site.xml
[root@10-124-147-23 ~]# cat /usr/local/hadoop/etc/hadoop/mapred-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<!-- Put site-specific property overrides in this file. --> <configuration>
<!-- 指定mr框架为yarn方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property> <property>
<name>mapreduce.jobhistory.address</name>
<value>hadoop1:10020</value>
</property> <property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>hadoop1:19888</value>
</property>
</configuration>
4.3.4 core-site.xml
[root@10-124-147-23 ~]# cat /usr/local/hadoop/etc/hadoop/core-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<!-- 指定hdfs的nameservice为ns1 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://ns1</value>
</property>
<!-- 指定hadoop临时目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/usr/local/hadoop/data/tmp</value>
</property>
<!-- 指定zookeeper地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>hadoop1:2181,hadoop2:2181,hadoop3:2181,hadoop4:2181</value>
</property>
</configuration>
4.3.5 yarn-site.xml
[root@10-124-147-23 ~]# cat /usr/local/hadoop/etc/hadoop/yarn-site.xml
<?xml version="1.0"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <configuration> <!-- Site specific YARN configuration properties -->
<!-- 开启RM高可靠 -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property> <!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property> <!-- 指定RM的名字 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property> <!-- 分别指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>hadoop3</value>
</property> <property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>hadoop4</value>
</property> <!-- 指定zk集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>hadoop1:2181,hadoop2:2181,hadoop3:2181,hadoop4:2181</value>
</property> <!-- 在RM节点接管后,任务状态可以恢复-->
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property> <!-- 设置存储yarn中状态信息的地方,默认为hdfs,这里设置为zookeeper-->
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property> <!-- 使在yarn上能够运行mapreduce_shuffle程序-->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
4.3.6 slave
[root@10-124-147-23 ~]# cat /usr/local/hadoop/etc/hadoop/slaves
hadoop5
hadoop6
hadoop7

这里的slaves分两种,对于hadoop1而言,其为namenode,所以其slaves是hdfs系统中的slaves,也就是datanode,在本文中,设定hadoop5,hadoop6,hadoop7datanode

而对于hadoop3而言,其为resourcemanager,故其slaves是yarn系统中的slaves,也就是nodemanagernodemanager是对每机机器的资源状态进行监控,同时将监控结果向resourcemanager进行报告,一般一台datanode上面都会有着nodemanager进程。

本文中journalnode,nodemanager,datanode三个角色都是位于同一机器,实际上journalnode只是参与到namenodeHA模式中,与后两者并不挂钩,因为集群中不允许同时有两个namenode同时工作 ,否则数据地址空间就会出错,但是为了HA,所以standbynamenode需要保持与active状态的namenode数据一致,两个namenode为了数据同步,会通过一组称作journalnodes的独立进程进行相互通信。当active状态的namenode的命名空间有任何修改时,会告知大部分的journalnodes进程。standby状态的namenode有能力读取journalnodes中的变更信息,并且一直监控edit log的变化,把变化应用于自己的命名空间。standby可以确保在集群出错时,命名空间状态已经完全同步了。

一般正常生产中,journalnode设定为5个,基本上zookeeper个数也是设定为5个,文中我zookeeper设定4个其实不太合理。

综上,所以对于hadoop3而言,其slaves也可以设定为hadoop5,hadoop6,hadoop7

所以本文中所有节点,hadoop配置可以保持一致

4.3.7 ssh-key验证

实际生产中其实只需要namenode之间ssh-key免密即可,实验环境中,因为需要在namenode中直接通过脚本启动其它slaves节点,所以需要进行ssh-key免密的设定

主要的设定的是datanode中需要有两个namenode和两个resourcemanager的ssh-key信息,同时namenoderesourcemanger自身也需要自身的ssh-key,以便启动,所以文中hadoop1,hadoop2,hadoop3,hadoop44台主机的hadoop用户的ssh-key需要放置于每一台主机hadoop用户之下。

[root@10-124-147-23 ~]# useradd hadoop
[hadoop@10-124-147-23 ~]$ ssh-keygen
[hadoop@10-124-147-23 ~]$ cat .ssh/id_rsa.pub
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAyQ9T7zTAlhqFM9XQoHTPzwfgDwAzwLUgqe7NnDpufiirK9QqCdLZFNE6PNtN7oNyWMu3r9UE5aMYv9uLMu22m+8xyTXXINYfPW9hsityu/N6a9DwhEC9joNS3DVjBR8YRMQG2sxtDbebbaG2R4BK77DZyoB0uyqRItxLIMYTiZ/00LCMJCoAINUQVzOrteVpLHAviRNnrwZewoD2sUgeZU0A0hT++RiE/prqI+jIFJSacduVaKsabRu/zKan9b8coC1b+GJnypqk+CPyahJL+0jgb9Jgrjm2Lt4erbBo/k3u16nSJpSoSdf7kr5HKv3ds5+fwcMQV5oKV1jv6ximIw== hadoop@10-124-147-23

然后切换至其它节点主要,依次创建hadoop用户,将namenode节点ssh-key写入

[root@10-124-147-33 letv]# useradd hadoop
[hadoop@10-124-147-33 ~]$ mkdir .ssh
[hadoop@10-124-147-33 ~]$ chmod g-w .ssh
以上这一步非常重要,因为正常情况下需要对hadoop用户进行密码设定之后,然后再使用ssh-copy-id将key自动写入到其它主机中,我们并没有对hadoop用户设定密码,而ssh中为了安全,g与o用户是对.ssh目录均无w权限的,所以需要将.ssh目录中g与o用户的w权限去掉。类似的还在后面中的authorized_keys文件
[hadoop@10-124-147-33 ~]$ vim .ssh/authorized_keys
将hadoop1中的id_rsa.pub写入
[hadoop@10-124-147-33 ~]$ chmod 600 .ssh/authorized_keys
[hadoop@10-124-147-33 ~]$ ll .ssh/authorized_keys
-rw------- 1 hadoop hadoop 1608 Jul 19 11:43 .ssh/authorized_keys
[hadoop@10-124-147-33 ~]$ ll -d .ssh/
drwxr-xr-x 2 hadoop hadoop 4096 Jul 19 11:43 .ssh/
4.3.8 hadoop 文件copy

将hadoop1中的hadoop目录整个scp至其它节点,同时注意/etc/profile文件,以及部分节点上面的java环境

4.4 hadoop的启动
4.4.1 启动journalnode
[hadoop@10-110-92-161 ~]$ cd /usr/local/hadoop/
[hadoop@10-110-92-161 hadoop]$ sbin/hadoop-daemon.sh start journalnode
[hadoop@10-110-92-161 hadoop]$ jps
1557 JournalNode
22439 Jps

三个节点的journalnode都要启动

4.4.2 格式化namenode
[hadoop@10-124-147-22 hadoop]$  hdfs namenode -format
4.4.3 启动active namenode
[hadoop@10-124-147-22 hadoop]$ sbin/hadoop-daemon.sh start namenode
[hadoop@10-124-147-22 hadoop]$ jps
2580 DFSZKFailoverController
29590 Jps
1487 NameNode
4.4.4 复制active namenode信息至standby namenode

格式化active namenode后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,可能直接copy至standby namenode,也可以通过选项-bootstrapStandby直接从active namenode拉取,使用命令拉取的前提是active namenode进程需要启动

[hadoop@10-124-147-23 hadoop]$ hdfs namenode -bootstrapStandby
[hadoop@10-124-147-23 hadoop]$ sbin/hadoop-daemon.sh start namenode
[hadoop@10-124-147-23 hadoop]$ jps
899 NameNode
11846 Jps
1353 DFSZKFailoverController
4.4.5 格式化zkfc
[hadoop@10-124-147-22 hadoop]$ hdfs zkfc -formatZK
4.4.6 启动hdfs
[hadoop@10-124-147-22 hadoop]$ sbin/start-dfs.sh
4.4.7 启动resourcemanager
[hadoop@10-124-147-32 hadoop]$ pwd
/usr/local/hadoop
[hadoop@10-124-147-32 hadoop]$ resourcemanager sbin/start-yarn.sh
[hadoop@10-124-147-32 hadoop]$ jps
30882 ResourceManager
26868 Jps
4.4.8 启动standby resourcemanager
[hadoop@10-124-147-33 hadoop]$ pwd
/usr/local/hadoop
[hadoop@10-124-147-33 hadoop]$ sbin/yarn-daemon.sh start resourcemanager
[hadoop@10-124-147-33 hadoop]$ jps
22675 Jps
26980 ResourceManager
4.4.9 集群状态检测
[hadoop@10-124-147-22 hadoop]$ hdfs haadmin -getServiceState nn1
active
[hadoop@10-124-147-22 hadoop]$ hdfs haadmin -getServiceState nn2
standby
[hadoop@10-124-147-22 hadoop]$ yarn rmadmin -getServiceState rm1
active
[hadoop@10-124-147-22 hadoop]$ yarn rmadmin -getServiceState rm2
standby

此时,可以通过web访问active namenode50070端口和active resourcemanager8080端口

4.4.10 启动history进程

在active namenode启动即可

[hadoop@10-124-147-22 hadoop]$ sbin/mr-jobhistory-daemon.sh start historyserver
[hadoop@10-124-147-22 hadoop]$ pwd
/usr/local/hadoop
[hadoop@10-124-147-22 hadoop]$ jps
2580 DFSZKFailoverController
31781 Jps
2711 JobHistoryServer
1487 NameNode
4.5 hadoop的简单使用
4.5.1 上传文件于hdfs
新建一个文件/tmp/test.txt
[hadoop@10-124-147-22 hadoop]$ cat /tmp/test.txt
hello world
hello mysql
hello mongo
hello elasticsearch
hello hadoop
hello hdfs
hello yarn
hello namenode
hello datanode
hello resourcemanager
hello nodemanager
hello journalnode
[hadoop@10-124-147-22 hadoop]$ hadoop fs -put /tmp/test.txt /wordcount
将/tmp/test.txt文件上传于hdfs中,并重命名为wordcount
[hadoop@10-124-147-22 hadoop]$ hadoop fs -cat /wordcount
hello world
hello mysql
hello mongo
hello elasticsearch
hello hadoop
hello hdfs
hello yarn
hello namenode
hello datanode
hello resourcemanager
hello nodemanager
hello journalnode
4.5.2 hadoop任务测试

hadoop中提供了简单的任务测试jar包,可以进行测试

[hadoop@10-124-147-22 hadoop]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.6.jar pi 2 10
Number of Maps = 2
Samples per Map = 10
Wrote input for Map #0
Wrote input for Map #1
Starting Job
18/07/23 15:41:47 INFO input.FileInputFormat: Total input paths to process : 2
18/07/23 15:41:47 INFO mapreduce.JobSubmitter: number of splits:2
18/07/23 15:41:47 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1532056892547_0003
18/07/23 15:41:47 INFO impl.YarnClientImpl: Submitted application application_1532056892547_0003
18/07/23 15:41:47 INFO mapreduce.Job: The url to track the job: http://hadoop3:8088/proxy/application_1532056892547_0003/
18/07/23 15:41:47 INFO mapreduce.Job: Running job: job_1532056892547_0003
18/07/23 15:41:53 INFO mapreduce.Job: Job job_1532056892547_0003 running in uber mode : false
18/07/23 15:41:53 INFO mapreduce.Job: map 0% reduce 0%
18/07/23 15:41:58 INFO mapreduce.Job: map 100% reduce 0%
18/07/23 15:42:03 INFO mapreduce.Job: map 100% reduce 100%
18/07/23 15:42:04 INFO mapreduce.Job: Job job_1532056892547_0003 completed successfully
18/07/23 15:42:05 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=50
FILE: Number of bytes written=376437
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=510
HDFS: Number of bytes written=215
HDFS: Number of read operations=11
HDFS: Number of large read operations=0
HDFS: Number of write operations=3
Job Counters
Launched map tasks=2
Launched reduce tasks=1
Data-local map tasks=2
Total time spent by all maps in occupied slots (ms)=5283
Total time spent by all reduces in occupied slots (ms)=2804
Total time spent by all map tasks (ms)=5283
Total time spent by all reduce tasks (ms)=2804
Total vcore-milliseconds taken by all map tasks=5283
Total vcore-milliseconds taken by all reduce tasks=2804
Total megabyte-milliseconds taken by all map tasks=5409792
Total megabyte-milliseconds taken by all reduce tasks=2871296
Map-Reduce Framework
Map input records=2
Map output records=4
Map output bytes=36
Map output materialized bytes=56
Input split bytes=274
Combine input records=0
Combine output records=0
Reduce input groups=2
Reduce shuffle bytes=56
Reduce input records=4
Reduce output records=0
Spilled Records=8
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=219
CPU time spent (ms)=3030
Physical memory (bytes) snapshot=752537600
Virtual memory (bytes) snapshot=6612717568
Total committed heap usage (bytes)=552075264
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=236
File Output Format Counters
Bytes Written=97
Job Finished in 18.492 seconds
Estimated value of Pi is 3.80000000000000000000

在job执行的时候,可以查看resourcemangerweb端的8088端口,上面可以看到job的完成进度

再执行一个word count任务

可以执行字母统计,将hdfs中的wordcount文件统计,并将结果输出到wordcount-to-output
[hadoop@10-124-147-22 hadoop]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.6.jar wordcount /wordcount /wordcount-to-output
18/07/23 15:45:12 INFO input.FileInputFormat: Total input paths to process : 1
18/07/23 15:45:13 INFO mapreduce.JobSubmitter: number of splits:1
18/07/23 15:45:13 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1532056892547_0004
18/07/23 15:45:13 INFO impl.YarnClientImpl: Submitted application application_1532056892547_0004
18/07/23 15:45:13 INFO mapreduce.Job: The url to track the job: http://hadoop3:8088/proxy/application_1532056892547_0004/
18/07/23 15:45:13 INFO mapreduce.Job: Running job: job_1532056892547_0004
18/07/23 15:45:19 INFO mapreduce.Job: Job job_1532056892547_0004 running in uber mode : false
18/07/23 15:45:19 INFO mapreduce.Job: map 0% reduce 0%
18/07/23 15:45:23 INFO mapreduce.Job: map 100% reduce 0%
18/07/23 15:45:29 INFO mapreduce.Job: map 100% reduce 100%
18/07/23 15:45:29 INFO mapreduce.Job: Job job_1532056892547_0004 completed successfully
18/07/23 15:45:29 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=197
FILE: Number of bytes written=250631
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=264
HDFS: Number of bytes written=140
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=2492
Total time spent by all reduces in occupied slots (ms)=3007
Total time spent by all map tasks (ms)=2492
Total time spent by all reduce tasks (ms)=3007
Total vcore-milliseconds taken by all map tasks=2492
Total vcore-milliseconds taken by all reduce tasks=3007
Total megabyte-milliseconds taken by all map tasks=2551808
Total megabyte-milliseconds taken by all reduce tasks=3079168
Map-Reduce Framework
Map input records=12
Map output records=24
Map output bytes=275
Map output materialized bytes=197
Input split bytes=85
Combine input records=24
Combine output records=13
Reduce input groups=13
Reduce shuffle bytes=197
Reduce input records=13
Reduce output records=13
Spilled Records=26
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=155
CPU time spent (ms)=2440
Physical memory (bytes) snapshot=465940480
Virtual memory (bytes) snapshot=4427837440
Total committed heap usage (bytes)=350224384
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=179
File Output Format Counters
Bytes Written=140

执行结果

[hadoop@10-124-147-22 hadoop]$ hadoop fs -ls /
Found 5 items
drwxrwx--- - hadoop supergroup 0 2018-07-20 11:21 /tmp
drwxr-xr-x - hadoop supergroup 0 2018-07-20 11:47 /user
-rw-r--r-- 3 hadoop supergroup 179 2018-07-20 11:22 /wordcount
drwxr-xr-x - hadoop supergroup 0 2018-07-23 15:45 /wordcount-to-output
[hadoop@10-124-147-22 hadoop]$ hadoop fs -ls /wordcount-to-output
Found 2 items
-rw-r--r-- 3 hadoop supergroup 0 2018-07-23 15:45 /wordcount-to-output/_SUCCESS
-rw-r--r-- 3 hadoop supergroup 140 2018-07-23 15:45 /wordcount-to-output/part-r-00000
[hadoop@10-124-147-22 hadoop]$ hadoop fs -cat /wordcount-to-output/part-r-00000
datanode 1
elasticsearch 1
hadoop 1
hdfs 1
hello 12
journalnode 1
mongo 1
mysql 1
namenode 1
nodemanager 1
resourcemanager 1
world 1
yarn 1

5.其它

5.1 hadoop3相对比hadoop2进程端口更变
Namenode ports: 50470 --> 9871, 50070 --> 9870, 8020 --> 9820
Secondary NN ports: 50091 --> 9869, 50090 --> 9868
Datanode ports: 50020 --> 9867, 50010 --> 9866, 50475 --> 9865, 50075 --> 9864
KMS service :16000 --> 9600

同时变更的还有slaves文件,在hadoop2中的slaves文件在hadoop3中变成works文件

5.2生产中datanode的启动

生产中hadoop集群里面的datanode一般都是几百上千台主机,实际上生产中的datanode都是在各自主机中自行单独启动,并不是直接通过namenode进行启动,所以上面4.3.7中的ssh-key在实际生产中并不无那么多需求。同时journalnode虽然消耗资源小,但是一般也不与datanode分布于同一台主机中。

hadoop HA集群的安装的更多相关文章

  1. 基于zookeeper的高可用Hadoop HA集群安装

    (1)hadoop2.7.1源码编译 http://aperise.iteye.com/blog/2246856 (2)hadoop2.7.1安装准备 http://aperise.iteye.com ...

  2. 全网最详细的Hadoop HA集群启动后,两个namenode都是standby的解决办法(图文详解)

    不多说,直接上干货! 解决办法 因为,如下,我的Hadoop HA集群. 1.首先在hdfs-site.xml中添加下面的参数,该参数的值默认为false: <property> < ...

  3. Hadoop教程(五)Hadoop分布式集群部署安装

    Hadoop教程(五)Hadoop分布式集群部署安装 1 Hadoop分布式集群部署安装 在hadoop2.0中通常由两个NameNode组成,一个处于active状态,还有一个处于standby状态 ...

  4. hadoop ha集群搭建

    集群配置: jdk1.8.0_161 hadoop-2.6.1 zookeeper-3.4.8 linux系统环境:Centos6.5 3台主机:master.slave01.slave02 Hado ...

  5. Hadoop HA集群 与 开发环境部署

    每一次 Hadoop 生态的更新都是如此令人激动 像是 hadoop3x 精简了内核,spark3 在调用 R 语言的 UDF 方面,速度提升了 40 倍 所以该文章肯定得配备上最新的生态 hadoo ...

  6. 全网最详细的Hadoop HA集群启动后,两个namenode都是active的解决办法(图文详解)

    不多说,直接上干货! 这个问题,跟 全网最详细的Hadoop HA集群启动后,两个namenode都是standby的解决办法(图文详解) 是大同小异. 欢迎大家,加入我的微信公众号:大数据躺过的坑  ...

  7. hadoop HA集群搭建步骤

      NameNode DataNode Zookeeper ZKFC JournalNode ResourceManager NodeManager node1 √   √ √   √   node2 ...

  8. Hadoop HA集群的搭建

    HA 集群搭建的难度主要在于配置文件的编写, 心细,心细,心细! ha模式下,secondary namenode节点不存在... 集群部署节点角色的规划(7节点)------------------ ...

  9. Hadoop Spark 集群简便安装总结

    本人实际安装经验,目的是为以后高速安装.仅供自己參考. 一.Hadoop 1.操作系统一如既往:①setup关掉防火墙.②vi /etc/sysconfig/selinux,改SELINUX=disa ...

随机推荐

  1. hive之视图和索引

    一.视图 1.视图定义 视图其实是一个虚表,视图可以允许保存一个查询,并像对待表一样对这个查询进行操作,视图是一个逻辑结构,并不会存储数据. 2.视图的创建 通过创建视图来限制数据访问可以用来保护信息 ...

  2. Cesium标点

    let startPoint = this.viewer.entities.add( //viewer.entities.add 添加实体的方法 { name: '测量距离', //这个属性跟页面显示 ...

  3. vue 项目的运行与 打包

    1.vue init webpack 2.npm install axios 3.npm run dev  运行项目 4.npm run build 打包项目 会生成一个dist 文件夹,我们只需要把 ...

  4. axios拦截器的使用方法

    很多时候我们需要在发送请求和响应数据的时候做一些页面处理,比如在请求服务器之前先判断以下用户是登录(通过token判断),或者设置请求头header,或者在请求到数据之前页面显示loading等等,还 ...

  5. InputStream接口的常见实现类

    一. FileInputStream FileInputStream可以从系统文件中获取输入字节,也从可以从诸从图象数据的的原始字节流中读取. 如果是读取字符串流,推荐使用FileReader. 感觉 ...

  6. BZOJ 2761: [JLOI2011]不重复数字 set

    Description 给出N个数,要求把其中重复的去掉,只保留第一次出现的数. 例如,给出的数为1 2 18 3 3 19 2 3 6 5 4,其中2和3有重复,去除后的结果为1 2 18 3 19 ...

  7. [NOIP模拟20]题解

    来自达哥的问候…… A.周 究级难题,完全不可做QAQ #include<cstdio> #include<iostream> #include<cstring> ...

  8. (转)ping: www.baidu.com: Name or service not known centos7 -bash: ifconfig: command not found

    [root@mysqlcentos01 ~]# ping www.baidu.com ping: www.baidu.com: Name or service not known [root@mysq ...

  9. linux记事工具:RedNotebook Lifeograph Kontact ThotKeeper

    Linux桌面有许多灵活而功能强大的日记工具,如支持标签.加密.多种日志模版和实时搜索.其中的优秀者包括: RedNotebook Lifeograph Kontact ThotKeeper

  10. linux下使用lftp的小结

    今天在解决一个远程服务器备份的问题时,用到了lftp的相关知识.整理如下: lftp的功能比较强大,相比原来用ftp,方便了很多. 1.登陆: lftp ftp://yourname@site pwd ...