题目如下:

We have n jobs, where every job is scheduled to be done from startTime[i] to endTime[i], obtaining a profit of profit[i].

You're given the startTime , endTime and profit arrays, you need to output the maximum profit you can take such that there are no 2 jobs in the subset with overlapping time range.

If you choose a job that ends at time X you will be able to start another job that starts at time X.

Example 1:

Input: startTime = [1,2,3,3], endTime = [3,4,5,6], profit = [50,10,40,70]
Output: 120
Explanation: The subset chosen is the first and fourth job.
Time range [1-3]+[3-6] , we get profit of 120 = 50 + 70.

Example 2:

Input: startTime = [1,2,3,4,6], endTime = [3,5,10,6,9], profit = [20,20,100,70,60]
Output: 150
Explanation: The subset chosen is the first, fourth and fifth job.
Profit obtained 150 = 20 + 70 + 60.

Example 3:

Input: startTime = [1,1,1], endTime = [2,3,4], profit = [5,6,4]
Output: 6

Constraints:

  • 1 <= startTime.length == endTime.length == profit.length <= 5 * 10^4
  • 1 <= startTime[i] < endTime[i] <= 10^9
  • 1 <= profit[i] <= 10^4

解题思路:很容易看出应该用动态规划。假设dp[i]为第i个工作在所有选择的工作序列中排在最后一个时可以获得的最大利润,那么有dp[i] = max(dp[i],dp[j] + profit[i] )(i.startTime >= j.endTime)。但是这样时间复杂度是O(n^2),这无法被接受。继续寻找规律,对于dp[i]来说,我们要找的是所有endTime小于i.startTime的元素,所有我们可以按endTime升序排序,存储每个endTime可以获得的利润的最大值到一个列表中,这样的话,对于startTime来说,只要通过二分查找找到在endTime在列表中的位置,即可求得对应的最大值。

代码如下:

class Solution(object):
def jobScheduling(self, startTime, endTime, profit):
"""
:type startTime: List[int]
:type endTime: List[int]
:type profit: List[int]
:rtype: int
"""
import bisect
item_list = []
for (start,end,pro) in zip(startTime,endTime,profit):
item_list.append((start,end,pro))
def cmpf(v1,v2):
if v1[1] != v2[1]:return v1[1] - v2[1]
return v1[0] - v2[0]
item_list.sort(cmp=cmpf)
dp = [0] * len(item_list)
dp[0] = item_list[0][2] end_time_order = []
for i in range(len(item_list)):
end_time_order.append(item_list[i][1]) max_val_list = [dp[0]]
max_val = dp[0]
for i in range(1,len(item_list)):
dp[i] = item_list[i][2] start = item_list[i][0] #left = bisect.bisect_left(end_time_order,start)
right = bisect.bisect_right(end_time_order,start)
if right == len(max_val_list) and end_time_order[right-1] <= start:
dp[i] = max_val_list[-1] + item_list[i][2]
elif right < len(max_val_list) and right > 0:
dp[i] = max_val_list[right-1] + item_list[i][2]
max_val = max(max_val,dp[i])
max_val_list.append(max_val)
#dp[i] = max(dp[i],dp[i-1])
#print dp
#print max_val_list
return max(dp)

【leetcode】1235. Maximum Profit in Job Scheduling的更多相关文章

  1. 【leetcode】998. Maximum Binary Tree II

    题目如下: We are given the root node of a maximum tree: a tree where every node has a value greater than ...

  2. 【LeetCode】895. Maximum Frequency Stack 解题报告(Python)

    [LeetCode]895. Maximum Frequency Stack 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxueming ...

  3. 【LeetCode】718. Maximum Length of Repeated Subarray 解题报告(Python)

    [LeetCode]718. Maximum Length of Repeated Subarray 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxu ...

  4. 【LeetCode】662. Maximum Width of Binary Tree 解题报告(Python)

    [LeetCode]662. Maximum Width of Binary Tree 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://leetcode.co ...

  5. 【Leetcode】164. Maximum Gap 【基数排序】

    Given an unsorted array, find the maximum difference between the successive elements in its sorted f ...

  6. 【leetcode】1255. Maximum Score Words Formed by Letters

    题目如下: Given a list of words, list of  single letters (might be repeating) and score of every charact ...

  7. 【leetcode】1189. Maximum Number of Balloons

    题目如下: Given a string text, you want to use the characters of text to form as many instances of the w ...

  8. 【LeetCode】1161. Maximum Level Sum of a Binary Tree 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 BFS 日期 题目地址:https://leetcod ...

  9. 【LeetCode】104. Maximum Depth of Binary Tree 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 方法一:BFS 方法二:DFS 参考资料 日期 题目 ...

随机推荐

  1. eclipse SVN插件的日常使用

    安装(我的安装方法,怎么方便怎么来) 1.打开eclipse,选择Help->Eclipse MarketPlace,搜索subclipse,点击install,等待.安装成功后会询问重启,点击 ...

  2. selenium-server--chromedriver环境

    x 准备环境: 1.selenium-server-standalone-3.8.1.jar 2.chromedriver.exe 一.查看本地电脑chrome浏览器版本信息: 二.访问代理地址:ht ...

  3. String和ByteBuffer互转

    String 转换 ByteBuffer: public static ByteBuffer getByteBuffer(String str) { return ByteBuffer.wrap(st ...

  4. CDH6.2安装之YUM方式

    参考: https://www.sysit.cn/blog/post/sysit/CDH6.2.0%E7%B3%BB%E7%BB%9F%E9%83%A8%E7%BD%B2%E6%89%8B%E5%86 ...

  5. javaScript学习总结(二)——jQuery插件的开发

    概要 jQuery插件就是以jQuery库为基础衍生出来的库,jQuery插件的好处是封装功能,提高了代码的复用性,加快了开发速度,现在网络上开源的jQuery插件非常多,随着版本的不停迭代越来越稳定 ...

  6. 常见网络摄像机的端口及RTSP地址

    海康威视默认IP地址:192.168.1.64/DHCP 用户名admin 密码自己设端口:“HTTP 端口”(默认为 80).“RTSP 端口”(默认为 554).“HTTPS 端 口”(默认 44 ...

  7. 小记---------spring框架之IOC理解

    Spring是一个开源框架,是一个轻量级的Java开发框架. Spring的核心是控制发转(IOC)和面向切面(AOP)   控制发转(IOC):指的是 对象的创建权反转(交给)给 Spring. 作 ...

  8. Maven简单项目及命令使用

    项目结构如下 HelloWorld.java package pak1; public class HelloWorld { public String sayHello(){ return &quo ...

  9. mysql事务、redo日志、undo日志、checkpoint详解

    转载: https://zhuanlan.zhihu.com/p/34650908 事务: 说起mysql innodb存储引擎的事务,首先想到就是ACID(不知道的请google),数据库是如何做到 ...

  10. C# 连接 Oracle数据库增删改查,事务

    一. 前情提要 一般.NET环境连接Oracle数据库,是通过 TNS/SQL.NET 配置文件,而 TNS 必须要 Oracle 客户端(如果连接的是服务器的数据库,本地还要装一个 client , ...