链接:

https://nanti.jisuanke.com/t/41403

题意:

State Z is a underwater kingdom of the Atlantic Ocean. This country is amazing. There are nn cities in the country and n-1n−1 undirected underwater roads which connect all cities.

In order to save energy and avoid traffic congestion, the king promulgated a series of traffic regulations:

Residents have to travel on fish!

Residents need to feed the fish before you start your trip!The amount of food you feed the fish should be exactly the total distance of your journey.

What kind of food to feed depends on the total distance of your journey!Total distance is a multiple of three. You should feed the fish with Durian. Total distance modulus 33 equaling 11. It should be Papaya.Total distance modulus 33 equaling 22. It should be Avocado!!!

Sure, fish like to eat these fruits very much.

Today is the first day of the king's decree. Because the residents here are not good at mathematics, they don't know how much fruit they need to give fish to go to other cities. So the king give an order to the energy minister Ynaonlctrm From all cities to all cities directly, which means that he will make n*(n-1)n∗(n−1) trips.

For example, A - (5 mile) - B - (5 mile) - C, he needs to run the fish, starting at A, passing B, finally arriving C (papaya 10 kg), also he needs to start at C and end at A (papaya 10 kg). Indirect passage is useless. "I've passed City B, my dear emperor." "Oh! It's no use! Not directly! People in cities will never know how much the fish need to eat! The fish will surely die!!! You also need to take several trips which start at B or end with B!" The Emperor said.

It's really a tough task. Can you help him figure out how much fruit he needs to prepare for the emperor's mission?

思路:

题解是树上DP, 比赛时候想到DP,和点分治,但是都没怎么学过, 赛后看题解..还要换根..没听过.

换根就是先DFS一遍之后,根据第一遍DFS得到的结果去处理第二遍DFS,第二遍DFS就是将每个点都看成一个根.

本题令Cnt1[i][j]为以root为根,i的子树中距i的距离%3为j的点的数量.Dp1[i][j]则是i的子树中距i为j的距离路径总和.

这两种状态可以用一遍DFS求得, root就是自己设的根.

第二遍DFS就是处理每个点为根的情况.

考虑Cnt2[i][j], 在以root为根的情况下, 非i的子节点到i的距离%3为j的节点个数.

令v为当前节点, u为其父节点

推出式子

Cnt2[v][(j+len)%3] = Cnt1[u][j]-Cnt1[v][((j-len)%3+3)%3]+Cnt2[u][j].

其中因为u的子节点包括了v的子节点, 需要处理掉.就是减掉.在加上父亲非子节点的贡献.

考虑路径和.同理, 减掉多余的贡献.加上父亲节点的非子节点的贡献.具体看代码.

点分治代码留着补

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MOD = 1e9+7;
const int MAXN = 2e4+10; struct Node
{
int to;
int dis;
}; int Cnt1[MAXN][3], Cnt2[MAXN][3];
LL Dp1[MAXN][3], Dp2[MAXN][3];
LL res[3];
vector<Node> G[MAXN];
int n; void Dfs1(int u, int v)
{
Cnt1[v][0] = 1;
for (int i = 0;i < G[v].size();i++)
{
int to = G[v][i].to;
int len = G[v][i].dis;
if (to == u)
continue;
Dfs1(v, to);
for (int j = 0;j < 3;j++)
{
Cnt1[v][(j+len)%3] += Cnt1[to][j];
Dp1[v][(j+len)%3] = (Dp1[v][(j+len)%3] + Dp1[to][j] + (len*Cnt1[to][j])%MOD)%MOD;
}
}
} void Dfs2(int u, int v)
{
// cout << u << ' ' << v << endl;
for (int i = 0;i < G[v].size();i++)
{
int to = G[v][i].to;
int len = G[v][i].dis;
if (to == u)
continue;
for (int j = 0;j < 3;j++)
{
Cnt2[to][(j+len)%3] = Cnt1[v][j] - Cnt1[to][((j-len)%3+3)%3] + Cnt2[v][j];
Dp2[to][(j+len)%3] = ((((Dp1[v][j] - Dp1[to][((j-len)%3+3)%3]) - (len*Cnt1[to][((j-len)%3+3)%3]))%MOD+MOD)%MOD
+ Dp2[v][j] + (len*Cnt2[to][(j+len)%3])%MOD)%MOD;
}
Dfs2(v, to);
}
} int main()
{
while (~scanf("%d", &n))
{
for (int i = 1;i <= n;i++)
G[i].clear();
memset(Cnt1, 0, sizeof(Cnt1));
memset(Cnt2, 0, sizeof(Cnt2));
memset(Dp1, 0, sizeof(Dp1));
memset(Dp2, 0, sizeof(Dp2));
memset(res, 0, sizeof(res));
int l, r, v;
for (int i = 1;i < n;i++)
{
scanf("%d%d%d", &l, &r, &v);
l++, r++;
G[l].push_back(Node{r, v});
G[r].push_back(Node{l, v});
}
Dfs1(0, 1);
Dfs2(0, 1);
for (int i = 1;i <= n;i++)
{
for (int j = 0;j < 3;j++)
res[j] = (res[j] + Dp1[i][j] + Dp2[i][j])%MOD;
}
printf("%lld %lld %lld\n", res[0], res[1], res[2]);
} return 0;
}

2019ICPC沈阳网络赛-D-Fish eating fruit(树上DP, 换根, 点分治)的更多相关文章

  1. 2019icpc沈阳网络赛 D Fish eating fruit 树形dp

    题意 分别算一个树中所有简单路径长度模3为0,1,2的距离和乘2. 分析 记录两个数组, \(dp[i][k]\)为距i模3为k的子节点到i的距离和 \(f[i][k]\)为距i模3为k的子节点的个数 ...

  2. 2019 沈阳网络赛 D Fish eating fruit ( 树形DP)

    题目传送门 题意:求一颗树中所有点对(a,b)的路径长度,路径长度按照模3之后的值进行分类,最后分别求每一类的和 分析:树形DP \(dp[i][j]\) 表示以 i 为根的子树中,所有子节点到 i ...

  3. 2019ICPC沈阳网络赛-B-Dudu's maze(缩点)

    链接: https://nanti.jisuanke.com/t/41402 题意: To seek candies for Maomao, Dudu comes to a maze. There a ...

  4. 2019ICPC上海网络赛 A Lightning Routing I 点分树(动态点分治)+线段树

    题意 给一颗带边权的树,有两种操作 \(C~e_i~w_i\),将第\(e_i\)条边的边权改为\(w_i\). \(Q~v_i\),询问距\(v_i\)点最远的点的距离. 分析 官方题解做法:动态维 ...

  5. Fish eating fruit 沈阳网络赛(树形dp)

    Fish eating fruit \[ Time Limit: 1000 ms \quad Memory Limit: 262144 kB \] 题意 大体的题意就是给出一棵树,求每一对点之间的距离 ...

  6. 2018 ICPC 沈阳网络赛

    2018 ICPC 沈阳网络赛 Call of Accepted 题目描述:求一个算式的最大值与最小值. solution 按普通算式计算方法做,只不过要同时记住最大值和最小值而已. Convex H ...

  7. 线段树+单调栈+前缀和--2019icpc南昌网络赛I

    线段树+单调栈+前缀和--2019icpc南昌网络赛I Alice has a magic array. She suggests that the value of a interval is eq ...

  8. 2019ICPC南京网络赛A题 The beautiful values of the palace(三维偏序)

    2019ICPC南京网络赛A题 The beautiful values of the palace https://nanti.jisuanke.com/t/41298 Here is a squa ...

  9. 沈阳网络赛 F - 上下界网络流

    "Oh, There is a bipartite graph.""Make it Fantastic." X wants to check whether a ...

随机推荐

  1. GPL,BSD,Apache三个开源协定的大体联系及区别

    开源许可证GPL.BSD.MIT.Mozilla.Apache和LGPL的区别 以下是上述协议的简单介绍: BSD开源协议 BSD开源协议是一个给于使用者很大自由的协议.基本上使用者可以"为 ...

  2. python基础之数据类型转换

    方法转换:str -->list str.split() list -->str ''.join(list)强制转换:str -->list list(str) str --> ...

  3. 【Linux开发】linux设备驱动归纳总结(六):1.中断的实现

    linux设备驱动归纳总结(六):1.中断的实现 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ...

  4. powerDesigner连接数据库连接失败

    powerDesigner连接数据库总是提示连接失败 原因是这个软件不能使用64位的jdk只能使用32位的jdk 在软件安装文件夹根目录下创建start.bat Set JAVA_HOME=E:\Ja ...

  5. Object中有哪些方法及其作用

    你知道Object中有哪些方法及其作用吗? 一.引言 二.Object方法详解 1.1.registerNatives() 1.2.getClass() 1.2.1.反射三种方式: 1.3.hashC ...

  6. SQL SERVER 字符串函数 STUFF()

    说明: STUFF 函数将字符串插入到另一个字符串中. 它从第一个字符串的开始位置删除指定长度的字符:然后将第二个字符串插入到第一个字符串的开始位置. 语法: STUFF ( character_ex ...

  7. Go语言流程控制(六)

    go语言的流程控制主要有if , for和switch. if else(分支结构) go语言的if判断: func main() { score:=65 if score>=90{ fmt.P ...

  8. python基础面试题(全网最全!)

    目录 1.为什么学习Python? 2.通过什么途径学习的Python? 3.Python和Java.PHP.C.C#.C++等其他语言的对比? 4.简述解释型和编译型编程语言? 5.Python解释 ...

  9. EJS学习(二)之语法规则上

    标签含义 <% %> :'脚本' 标签,用于流程控制,无输出即直接使用JavaScript语言. <%= %>:转义输出数据到模板(输出是转义 HTML 标签)即在后端定义的变 ...

  10. 一款完美代替微信小程序原生客服消息的工具:

    一.设置:无需开发,多种回复(自动+人工)   自动回复形式有3种: 打开客服消息(用户只要和客服互动过一次,再次点击进入,会收到设置好的自动回复) 关键词回复(用户在小程序中回复某个关键词内容时,会 ...