题目传送

表示一开始也是一脸懵逼,虽然想到了DP,但面对多变的状态不知从何转移及怎么合理记录状态。之(借鉴大佬思路)后,豁然开朗,于是在AC后分享一下题解。

发现数据范围出奇地小,不过越是小的数据范围,算法的灵活性就越大。小数据对我们各个算法的组合及时间复杂度的掌握要求很高。面对二维的最优化选择,其实我们可以先通过搜索枚举出行的所有选择,存到一个数组team中,然后在行已经确认的情况下,跑一遍一维的DP:设dp[j][i]为在前j列选择i列的最优情况(为了方便,要求第i选择的列一定是第j列)。则状态转移方程就可写成:dp[j][i]=min(dp[j][i],dp[k][i-1]+lc[j]+hc[k][j]),其中lc为第j列的分值,hc[k][j]为第k列和第j列横向相邻元素对分值的贡献,k=i-1,i-1+1,...,j-1。对于lc和hk

我们可以在每次搜索完成后预处理一下,整个程序的时间复杂度即为O(C(n,r)*rm2),足以解出题。

代码上有一个小优化,详情见注释:

 #include <iostream>
#include <cstdio>
#include <cmath> using namespace std; int n, m, r, c, num[][], ans = 0x7fffffff, team[], lteam;
int lc[]; //列
int hc[][]; //列之间
int dp[][]; void init()
{
for (int i = ; i <= m; i++)
{
lc[i] = ;
for (int j = ; j < r; j++)
lc[i] += abs(num[team[j]][i] - num[team[j + ]][i]);
}
for (int i = ; i < m; i++)
for (int j = i + ; j <= m; j++)
{
hc[i][j] = ;
for (int k = ; k <= r; k++)
hc[i][j] += abs(num[team[k]][i] - num[team[k]][j]);
}
} void DP()
{
for (int i = ; i <= m; i++)
dp[i][] = lc[i];
if (c == )
{
for (int i = ; i <= m; i++)
ans = ans > dp[i][] ? dp[i][] : ans;
return;
}
for (int i = ; i <= c; i++)
{
for (int j = i; j <= m - c + i; j++)
{
dp[j][i] = 0x2fffffff;
for (int k = j - ; k >= i - ; k--)
dp[j][i] = min(dp[j][i], dp[k][i - ] + lc[j] + hc[k][j]);
}
}
for (int i = c; i <= m; i++)
ans = min(ans, dp[i][c]);
} void dfs(int now)
{
if (now > n)//选择完毕
{
init();
DP();
return;
}
if (r - lteam == n - now + )//当剩下的元素与还要选择的元素的数量相等时,必须要选
{
team[++lteam] = now;
dfs(now + );
--lteam;
return;
}
dfs(now + );//当前行要么不选
if (lteam < r)//要么在符合条件的情况下选
{
team[++lteam] = now;
dfs(now + );
--lteam;
}
} int main()
{
scanf("%d%d%d%d", &n, &m, &r, &c);
for (int i = ; i <= n; i++)
for (int j = ; j <= m; j++)
scanf("%d", &num[i][j]);
dfs();
printf("%d", ans);
return ;
}

洛谷P2258 子矩阵——题解的更多相关文章

  1. 洛谷P2258 子矩阵 题解 状态压缩/枚举/动态规划

    作者:zifeiy 标签:状态压缩.枚举.动态规划 题目链接:https://www.luogu.org/problem/P2258 这道题目状态压缩是肯定的,我们需要用二进制来枚举状态. 江湖上有一 ...

  2. 洛谷 P2258 子矩阵 解题报告

    P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第 2 . 4行和第 ...

  3. 洛谷P2258 子矩阵

    P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4 ...

  4. 洛谷 P2258 子矩阵

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...

  5. 洛谷P2258 子矩阵[2017年5月计划 清北学堂51精英班Day1]

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...

  6. 洛谷NOIp热身赛题解

    洛谷NOIp热身赛题解 A 最大差值 简单树状数组,维护区间和.区间平方和,方差按照给的公式算就行了 #include<bits/stdc++.h> #define il inline # ...

  7. 洛谷P2827 蚯蚓 题解

    洛谷P2827 蚯蚓 题解 题目描述 本题中,我们将用符号 ⌊c⌋ 表示对 c 向下取整. 蛐蛐国最近蚯蚓成灾了!隔壁跳蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮他们消灭蚯蚓. 蛐蛐国里现 ...

  8. 洛谷P1816 忠诚 题解

    洛谷P1816 忠诚 题解 题目描述 老管家是一个聪明能干的人.他为财主工作了整整10年,财主为了让自已账目更加清楚.要求管家每天记k次账,由于管家聪明能干,因而管家总是让财主十分满意.但是由于一些人 ...

  9. [POI 2008&洛谷P3467]PLA-Postering 题解(单调栈)

    [POI 2008&洛谷P3467]PLA-Postering Description Byteburg市东边的建筑都是以旧结构形式建造的:建筑互相紧挨着,之间没有空间.它们共同形成了一条长长 ...

随机推荐

  1. UVA11987 带删除并查集

    1~n,n个数,初始每个数独自作为一个集合,然后进行m次操作.操作有三种:1 p q :把 p 所在的集合合并到 q 所在的集合 2 p q :把 p 从 p 的集合中拿出,放到 q 的集合里 3 p ...

  2. 【Windows Server存储】windows文件系统

    windows文件系统 弹性文件系统(ReFS) 无检查磁盘,Windows 8或Windows Server 2012以上运行. 参考资料表明,这是一个失败的文件系统,以后将不会商用. 参考资料:h ...

  3. finereport连接mysql8.0的解决办法

    1.具体连接操作 首先将mysql-connector-java-8.0以上的jar包放到FindReport安装目录下的webapps下的WEB-INF下的lib下. 打开finereport,找到 ...

  4. jeecg项目将workbook 的Excel流添加到zip压缩包里导出

    1.直接献出代码 Map<String,List<ConfidentialInformation>> typeMap = new HashMap<>(); try ...

  5. nginx rewrite + 排错方法 + server_name 172.19.134.43

    upstream space.two.cn { ip_hash; #ip hash:每个请求按访问ip的hash结果分配,这样每个访客固定访问一个后端服务器,可以解决session的问题. serve ...

  6. css发展过程

    https://www.cnblogs.com/dashnowords/p/9460722.html

  7. ES调优

    ES Connection timed out,调优方向 1. 使用游标滚动查询 scrollId 游标id searchResponse.getScrollId() scroll 设置游标的保留时间 ...

  8. MongoDB入门_MongoDB特色

    1. sql数据库与nosql数据库对比 nosql不支持实时一致性转而支持数据的最终一致性,数据有一定的延迟 redis数据库支持部分事物,而mongodb不支持事物 nosql数据库没有多表联查功 ...

  9. fpga配置方式 .jic固化为ps模式

    FPGA不同下载方式的区别[扫盲]以及如何利用AS模式固化程序(转载)     主动配置方式(AS)和被动配置方式(PS)和最常用的(JTAG)配置方式: AS由FPGA器件引导配置操作过程,它控制着 ...

  10. 基于FPGA的以太网开发

    基于FPGA的以太网开发,在调试过的FPGA玩家开来,其实算不上很难的技术!但是如果只是菜鸟级别的选手,没有调试过的话,就有些头疼了!早在自己在实习的时候,就接触到XAUI(万兆以太网口)接口,但是由 ...