python3下multiprocessing、threading和gevent性能对比----暨进程池、线程池和协程池性能对比

 
  • 30004

目前计算机程序一般会遇到两类I/O:硬盘I/O和网络I/O。我就针对网络I/O的场景分析下python3下进程、线程、协程效率的对比。进程采用multiprocessing.Pool进程池,线程是自己封装的进程池,协程采用gevent的库。用python3自带的urlllib.request和开源的requests做对比。代码如下:

  1. import urllib.request
  2. import requests
  3. import time
  4. import multiprocessing
  5. import threading
  6. import queue
  7. def startTimer():
  8. return time.time()
  9. def ticT(startTime):
  10. useTime = time.time() - startTime
  11. return round(useTime, 3)
  12. #def tic(startTime, name):
  13. #    useTime = time.time() - startTime
  14. #    print('[%s] use time: %1.3f' % (name, useTime))
  15. def download_urllib(url):
  16. req = urllib.request.Request(url,
  17. headers={'user-agent': 'Mozilla/5.0'})
  18. res = urllib.request.urlopen(req)
  19. data = res.read()
  20. try:
  21. data = data.decode('gbk')
  22. except UnicodeDecodeError:
  23. data = data.decode('utf8', 'ignore')
  24. return res.status, data
  25. def download_requests(url):
  26. req = requests.get(url,
  27. headers={'user-agent': 'Mozilla/5.0'})
  28. return req.status_code, req.text
  29. class threadPoolManager:
  30. def __init__(self,urls, workNum=10000,threadNum=20):
  31. self.workQueue=queue.Queue()
  32. self.threadPool=[]
  33. self.__initWorkQueue(urls)
  34. self.__initThreadPool(threadNum)
  35. def __initWorkQueue(self,urls):
  36. for i in urls:
  37. self.workQueue.put((download_requests,i))
  38. def __initThreadPool(self,threadNum):
  39. for i in range(threadNum):
  40. self.threadPool.append(work(self.workQueue))
  41. def waitAllComplete(self):
  42. for i in self.threadPool:
  43. if i.isAlive():
  44. i.join()
  45. class work(threading.Thread):
  46. def __init__(self,workQueue):
  47. threading.Thread.__init__(self)
  48. self.workQueue=workQueue
  49. self.start()
  50. def run(self):
  51. while True:
  52. if self.workQueue.qsize():
  53. do,args=self.workQueue.get(block=False)
  54. do(args)
  55. self.workQueue.task_done()
  56. else:
  57. break
  58. urls = ['http://www.ustchacker.com'] * 10
  59. urllibL = []
  60. requestsL = []
  61. multiPool = []
  62. threadPool = []
  63. N = 20
  64. PoolNum = 100
  65. for i in range(N):
  66. print('start %d try' % i)
  67. urllibT = startTimer()
  68. jobs = [download_urllib(url) for url in urls]
  69. #for status, data in jobs:
  70. #    print(status, data[:10])
  71. #tic(urllibT, 'urllib.request')
  72. urllibL.append(ticT(urllibT))
  73. print('1')
  74. requestsT = startTimer()
  75. jobs = [download_requests(url) for url in urls]
  76. #for status, data in jobs:
  77. #    print(status, data[:10])
  78. #tic(requestsT, 'requests')
  79. requestsL.append(ticT(requestsT))
  80. print('2')
  81. requestsT = startTimer()
  82. pool = multiprocessing.Pool(PoolNum)
  83. data = pool.map(download_requests, urls)
  84. pool.close()
  85. pool.join()
  86. multiPool.append(ticT(requestsT))
  87. print('3')
  88. requestsT = startTimer()
  89. pool = threadPoolManager(urls, threadNum=PoolNum)
  90. pool.waitAllComplete()
  91. threadPool.append(ticT(requestsT))
  92. print('4')
  93. import matplotlib.pyplot as plt
  94. x = list(range(1, N+1))
  95. plt.plot(x, urllibL, label='urllib')
  96. plt.plot(x, requestsL, label='requests')
  97. plt.plot(x, multiPool, label='requests MultiPool')
  98. plt.plot(x, threadPool, label='requests threadPool')
  99. plt.xlabel('test number')
  100. plt.ylabel('time(s)')
  101. plt.legend()
  102. plt.show()

运行结果如下:

从上图可以看出,python3自带的urllib.request效率还是不如开源的requests,multiprocessing进程池效率明显提升,但还低于自己封装的线程池,有一部分原因是创建、调度进程的开销比创建线程高(测试程序中我把创建的代价也包括在里面)。

下面是gevent的测试代码:

  1. import urllib.request
  2. import requests
  3. import time
  4. import gevent.pool
  5. import gevent.monkey
  6. gevent.monkey.patch_all()
  7. def startTimer():
  8. return time.time()
  9. def ticT(startTime):
  10. useTime = time.time() - startTime
  11. return round(useTime, 3)
  12. #def tic(startTime, name):
  13. #    useTime = time.time() - startTime
  14. #    print('[%s] use time: %1.3f' % (name, useTime))
  15. def download_urllib(url):
  16. req = urllib.request.Request(url,
  17. headers={'user-agent': 'Mozilla/5.0'})
  18. res = urllib.request.urlopen(req)
  19. data = res.read()
  20. try:
  21. data = data.decode('gbk')
  22. except UnicodeDecodeError:
  23. data = data.decode('utf8', 'ignore')
  24. return res.status, data
  25. def download_requests(url):
  26. req = requests.get(url,
  27. headers={'user-agent': 'Mozilla/5.0'})
  28. return req.status_code, req.text
  29. urls = ['http://www.ustchacker.com'] * 10
  30. urllibL = []
  31. requestsL = []
  32. reqPool = []
  33. reqSpawn = []
  34. N = 20
  35. PoolNum = 100
  36. for i in range(N):
  37. print('start %d try' % i)
  38. urllibT = startTimer()
  39. jobs = [download_urllib(url) for url in urls]
  40. #for status, data in jobs:
  41. #    print(status, data[:10])
  42. #tic(urllibT, 'urllib.request')
  43. urllibL.append(ticT(urllibT))
  44. print('1')
  45. requestsT = startTimer()
  46. jobs = [download_requests(url) for url in urls]
  47. #for status, data in jobs:
  48. #    print(status, data[:10])
  49. #tic(requestsT, 'requests')
  50. requestsL.append(ticT(requestsT))
  51. print('2')
  52. requestsT = startTimer()
  53. pool = gevent.pool.Pool(PoolNum)
  54. data = pool.map(download_requests, urls)
  55. #for status, text in data:
  56. #    print(status, text[:10])
  57. #tic(requestsT, 'requests with gevent.pool')
  58. reqPool.append(ticT(requestsT))
  59. print('3')
  60. requestsT = startTimer()
  61. jobs = [gevent.spawn(download_requests, url) for url in urls]
  62. gevent.joinall(jobs)
  63. #for i in jobs:
  64. #    print(i.value[0], i.value[1][:10])
  65. #tic(requestsT, 'requests with gevent.spawn')
  66. reqSpawn.append(ticT(requestsT))
  67. print('4')
  68. import matplotlib.pyplot as plt
  69. x = list(range(1, N+1))
  70. plt.plot(x, urllibL, label='urllib')
  71. plt.plot(x, requestsL, label='requests')
  72. plt.plot(x, reqPool, label='requests geventPool')
  73. plt.plot(x, reqSpawn, label='requests Spawn')
  74. plt.xlabel('test number')
  75. plt.ylabel('time(s)')
  76. plt.legend()
  77. plt.show()

运行结果如下:

从上图可以看到,对于I/O密集型任务,gevent还是能对性能做很大提升的,由于协程的创建、调度开销都比线程小的多,所以可以看到不论使用gevent的Spawn模式还是Pool模式,性能差距不大。

因为在gevent中需要使用monkey补丁,会提高gevent的性能,但会影响multiprocessing的运行,如果要同时使用,需要如下代码:

  1. gevent.monkey.patch_all(thread=False, socket=False, select=False)

可是这样就不能充分发挥gevent的优势,所以不能把multiprocessing Pool、threading Pool、gevent Pool在一个程序中对比。不过比较两图可以得出结论,线程池和gevent的性能最优的,其次是进程池。附带得出个结论,requests库比urllib.request库性能要好一些哈:-)

转载请注明:转自http://blog.csdn.net/littlethunder/article/details/40983031

python3下multiprocessing、threading和gevent性能对比----暨进程池、线程池和协程池性能对比的更多相关文章

  1. 线程队列 concurrent 协程 greenlet gevent

    死锁问题 所谓死锁:是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进 ...

  2. based on Greenlets (via Eventlet and Gevent) fork 孙子worker 比较 gevent不是异步 协程原理 占位符 placeholder (Future, Promise, Deferred) 循环引擎 greenlet 没有显式调度的微线程,换言之 协程

    gevent GitHub - gevent/gevent: Coroutine-based concurrency library for Python https://github.com/gev ...

  3. python 并发编程 基于gevent模块 协程池 实现并发的套接字通信

    基于协程池 实现并发的套接字通信 客户端: from socket import * client = socket(AF_INET, SOCK_STREAM) client.connect(('12 ...

  4. python3 - 多线程和协程速率测试对比

    多线程和协程都属于IO密集型,我通过以下用例测试多线程和协程的实际速率对比. 实例:通过socket客户端以多线程并发模式请求不同服务器端(这里服务器端分2种写法:第一种服务器通过协程实现,第二种服务 ...

  5. Swoole 同步模式与协程模式的对比

    在现代化 PHP 高级开发中,Swoole 为 PHP 带来了更多可能,如:常驻内存.协程,关于传统的 Apache/FPM 模式与常驻内存模式(同步)的巨大差异,之前我做过测试,大家能直观的感受到性 ...

  6. python采用 多进程/多线程/协程 写爬虫以及性能对比,牛逼的分分钟就将一个网站爬下来!

    首先我们来了解下python中的进程,线程以及协程! 从计算机硬件角度: 计算机的核心是CPU,承担了所有的计算任务.一个CPU,在一个时间切片里只能运行一个程序. 从操作系统的角度: 进程和线程,都 ...

  7. 第十天 多进程、协程(multiprocessing、greenlet、gevent、gevent.monkey、select、selector)

    1.多进程实现方式(类似于多线程) import multiprocessing import time,threading def thread_run():#定义一个线程函数 print(&quo ...

  8. 基础10 多进程、协程(multiprocessing、greenlet、gevent、gevent.monkey、select、selector)

    1.多进程实现方式(类似于多线程) import multiprocessing import time,threading def thread_run():#定义一个线程函数 print(&quo ...

  9. Cpython解释器下实现并发编程——多进程、多线程、协程、IO模型

    一.背景知识 进程即正在执行的一个过程.进程是对正在运行的程序的一个抽象. 进程的概念起源于操作系统,是操作系统最核心的概念,也是操作系统提供的最古老也是最重要的抽象概念之一.操作系统的其他所有内容都 ...

随机推荐

  1. 极*Java速成教程 - (7)

    Java高级特性 数组 在Java中,数组是一串连续的,不可改变长度的,对象被固定的,类型固定的连续空间.数组中的随机访问非常迅速,但为了速度放弃了灵活性.而效率也是数组最大的优点. 在使用泛型的容器 ...

  2. 【JZOJ 3910】Idiot 的间谍网络

    题面: Description 作为一名高级特工,Idiot 苦心经营多年,终于在敌国建立起一张共有n 名特工的庞大间谍网络. 当然,出于保密性的要求,间谍网络中的每名特工最多只会有一名直接领导.现在 ...

  3. 分布式系统中唯一 ID 的生成方法

    在分布式系统存在多个 Shard 的场景中, 同时在各个 Shard 插入数据时, 怎么给这些数据生成全局的 unique ID? 在单机系统中 (例如一个 MySQL 实例), unique ID ...

  4. IWorkspaceFactory pWorkspaceFactory = new ShapefileWorkspaceFactoryClass(); 时,报COMException

    解决办法: 在Program.cs的Main函数中添加如下代码: ESRI.ArcGIS.RuntimeManager.Bind(ESRI.ArcGIS.ProductCode.Desktop);

  5. wpf中文本框只能输入整数

    private void txtBarCodeNum_KeyUp(object sender, KeyEventArgs e) { TxtInt(sender as TextBox); } priva ...

  6. js工厂函数创建对象与对象构造函数的理解

    工厂函数,顾名思义,就是通过一个"工厂的加工" 来创建一个对象的函数 //工厂函数 function createPerson(name,sex){ sex = sex == '男' ? '女' : ...

  7. java交换两个变量值a,b的多钟方法

    首先我们定义两个变量用来检查方法可行性 int a=5; int b=3; 方法一,也是最容易想到的,就是建立中间变量法 int temp; temp=a; a=b; b=temp; System.o ...

  8. 用R语言提取数据框中日期对应年份(列表转矩阵)

    用R语言提取数据框中日期对应年份(列表转矩阵) 在数据处理中常会遇到要对数据框中的时间做聚类处理,如从"%m/%d/%Y"中提取年份. 对应操作为:拆分成列表——列表转矩阵——利用 ...

  9. tp5 模板参数配置(模板静态文件路径)

    tp5 模板参数配置(模板静态文件路径) // 模板页面使用 <link rel="stylesheet" type="text/css" href=&q ...

  10. 10年前文章_mpc8313的ltib安装以及u-boot重新编译

    Linux系统下安装ltib(linux target image builder): 1.       下载光盘到本地 wget http://192.168.1.4/share/vendor/mp ...