kNN算法实例(约会对象喜好预测和手写识别)
import numpy as np
import operator
import random
import os def file2matrix(filePath):#从文本中提取特征矩阵和标签
f = open(filePath,'r+').readlines()
fileLength = len(f)
dataSet = np.zeros((fileLength,3),np.float64)
labelList = []
for i in range(fileLength):
row = f[i].split('\t')
dataSet[i,:] = row[0:3]
labelList.append(row[-1].strip('\n'))
return dataSet,labelList def autoNormal(data):#归一化处理
dataShape = data.shape
dataMin = data.min(0)
dataMax = data.max(0)
normalDataSet = np.zeros(dataShape,np.float64)
diff = dataMax - dataMin
normalDataSet = (data -np.tile(dataMin,(dataShape[0],1)))/np.tile(diff,(dataShape[0],1))
return normalDataSet,diff,dataMin def dataClassTest(dataSet,labelList):#测试算法准确率
ratio = 0.1
correntCount = 0
testNumber = int(ratio*dataSet.shape[0])
for i in range(testNumber):
k = random.randint(0, dataSet.shape[0])
label = classify0(dataSet[k],dataSet,labelList,20)
if label == labelList[k]:
correntCount += 1
return correntCount*100/testNumber def classifyPerson():#输入数据进行预测
dataSet,labelSet = file2matrix('datingTestSet.txt')
percentTats = float(input('Please input percentage of time spend playing video games?'))
miles = float(input('Please input frequent flier miles earned per year?'))
cream = float(input('Please input liters of ice cream consumed per year?'))
dataSet,diff,dataMin = autoNormal(dataSet)
intX = np.array([percentTats,miles,cream],np.float64) label = classify0((intX-dataMin)/diff,dataSet,labelSet,20)
print("You likely {0} the man!".format(label)) correntPercent = dataClassTest(dataSet,labelSet)
print("The estimate corrent percent is {0}%!".format(correntPercent)) def classify0(intX,dataSet,labelSet,k):#kNN分类算法
intX = np.tile(intX,(dataSet.shape[0],1))
square = (intX - dataSet)**2
sum = square.sum(axis=1)
sqrt = sum**0.5
sortedDistIndicies = sqrt.argsort()
classCount={}
for i in range(k):
label = labelSet[sortedDistIndicies[i]]
classCount[label] = classCount.get(label,0)+1
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) return sortedClassCount[0][0] def img2vector(filename):#将32*32图片转换成1*1024向量
vector = np.zeros((1,1024))
f = open(filename)
for i in range(32):
fr = f.readline()
for j in range(32):
vector[0,32*i+j] = int(fr[j])
return vector def handwritingClassTest():
filenameList = os.listdir(r'machinelearninginaction\Ch02\digits\trainingDigits')
m = len(filenameList)
trainLabelList = []
trainDataMatrix = np.zeros((m,1024))
for i in range(m):
trainLabelList.append(int(filenameList[i].strip('_')[0]))
trainDataMatrix[i,:] = img2vector(r'machinelearninginaction\Ch02\digits\trainingDigits\{0}'.format(filenameList[i]))
filenameList = os.listdir(r'machinelearninginaction\Ch02\digits\testDigits')
m = len(filenameList)
corrent = 0.0
for i in range(m):
testLabel = int(filenameList[i].strip('_')[0])
testIn = img2vector(r'machinelearninginaction\Ch02\digits\testDigits\{0}'.format(filenameList[i]))
testOut = classify0(testIn,trainDataMatrix,trainLabelList,3)
if testOut == testLabel:
corrent += 1
else:
print("Error:the classifier came back with:{0}, the real answer is:{1}。".format(testOut,testLabel))
print("the corrent percent is:%.2f %%。"%(corrent*100/m))
if __name__ == '__main__':
classifyPerson() #约会预测
#handwritingClassTest() #手写识别
约会预测运行结果:
Please input percentage of time spend playing video games?100
Please input frequent flier miles earned per year?8
Please input liters of ice cream consumed per year?200
You likely didntLike the man!
The estimate corrent percent is 96.0%! 进程已结束,退出代码 0
手写识别运行结果:
Error:the classifier came back with:7, the real answer is:1。
Error:the classifier came back with:9, the real answer is:3。
Error:the classifier came back with:3, the real answer is:5。
Error:the classifier came back with:6, the real answer is:5。
Error:the classifier came back with:6, the real answer is:8。
Error:the classifier came back with:3, the real answer is:8。
Error:the classifier came back with:1, the real answer is:8。
Error:the classifier came back with:1, the real answer is:8。
Error:the classifier came back with:1, the real answer is:9。
Error:the classifier came back with:7, the real answer is:9。
the corrent percent is:98.94 %。 进程已结束,退出代码 0
测试数据:
说明:代码参考《机器学习实战》
kNN算法实例(约会对象喜好预测和手写识别)的更多相关文章
- 吴裕雄--天生自然python机器学习实战:K-NN算法约会网站好友喜好预测以及手写数字预测分类实验
实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window ...
- 第二篇:基于K-近邻分类算法的约会对象智能匹配系统
前言 假如你想到某个在线约会网站寻找约会对象,那么你很可能将该约会网站的所有用户归为三类: 1. 不喜欢的 2. 有点魅力的 3. 很有魅力的 你如何决定某个用户属于上述的哪一类呢?想必你会分析用户的 ...
- k最邻近算法——使用kNN进行手写识别
上篇文章中提到了使用pillow对手写文字进行预处理,本文介绍如何使用kNN算法对文字进行识别. 基本概念 k最邻近算法(k-Nearest Neighbor, KNN),是机器学习分类算法中最简单的 ...
- python 实现 KNN 分类器——手写识别
1 算法概述 1.1 优劣 优点:进度高,对异常值不敏感,无数据输入假定 缺点:计算复杂度高,空间复杂度高 应用:主要用于文本分类,相似推荐 适用数据范围:数值型和标称型 1.2 算法伪代码 (1)计 ...
- 机器学习实战一:kNN手写识别系统
实战一:kNN手写识别系统 本文将一步步地构造使用K-近邻分类器的手写识别系统.由于能力有限,这里构造的系统只能识别0-9.需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:32像素*3 ...
- TensorFlow 入门之手写识别(MNIST) softmax算法
TensorFlow 入门之手写识别(MNIST) softmax算法 MNIST flyu6 softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...
- 机器学习实战kNN之手写识别
kNN算法算是机器学习入门级绝佳的素材.书上是这样诠释的:“存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都有标签,即我们知道样本集中每一条数据与所属分类的对应关系.输入没有标签的新数据 ...
- TensorFlow 入门之手写识别(MNIST) softmax算法 二
TensorFlow 入门之手写识别(MNIST) softmax算法 二 MNIST Fly softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...
- TensorFlow MNIST(手写识别 softmax)实例运行
TensorFlow MNIST(手写识别 softmax)实例运行 首先要有编译环境,并且已经正确的编译安装,关于环境配置参考:http://www.cnblogs.com/dyufei/p/802 ...
随机推荐
- PHP7.2 、git、swoole安装
一.安装php 1.安装gcc yum -y install gcc gcc-c++ 2.安装一些库 yum -y install php-mcrypt libmcrypt-devel libxml2 ...
- Apache 的 http-default.conf 详解
##Apache 默认设置文件 Timeout 300 #设置服务器在断定请求失败前等待的秒数.默认值 300 KeepAlive Off #设置是否启用 HTTP 持久链接,On ...
- 算法trick
数组从头到尾的循环遍历: index=(index+1)%length 索引值增加定长,对长度取余,则形成头尾循环.
- ascii 八进制
int main() 4 { 5 char buf[20] = {'\101','\102','\103',0}; 6 printf("%s",buf); 7 return 0; ...
- Stack Overflow 推荐编程书单
Stack Overflow 推荐编程书单 1 Working Effectively with Legacy Code Michael C. Feathers 修改代码是每一位软件开发人员的日常 ...
- Qt的QSettings类和.ini文件读写
Detailed Description QSettings类提供了持久的跨平台的应用程序设置.用户通常期望应用程序记住它的设置(窗口大小.位置等)所有会话.这些信息通常存储在Windows系统注册表 ...
- C#基础知识之DirectorySearcher 类
活动目录(Active Directory)是从一个数据存储开始的,它采用了类似Exchange Server的数据存储,所以被称为Extensible Storage Service (ESS).其 ...
- canvas合并两张图片
解析: 原理是一样的 画多张图需要一张一张画 也就是等图片onload成功后处理 这里代码写的比较随意 实际用的时候可以小粉转一下 也非常简单.我懒~~ 么么.. newImage(text) { / ...
- Mike的农场
题目 Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i]元, ...
- 对postcss-plugin-px2rem的研究
1.安装postcss-plugin-px2rem 2.配置 css: { loaderOptions: { postcss: { plugins: [ require('postcss-plugin ...