### 题面
https://www.lydsy.com/JudgeOnline/problem.php?id=4987
### 分析

先考虑贪心,求出树的直径,显然直径应该只被经过1次(最长的边应该走最少次数),其他非直径上的边被经过2次,整体的形状应该类似一条链上接着许多子树
考虑树形DP
子状态:$dp[x][i][j]( j\in \left\{0,1,2\right\})$,表示以x为根的子树中选了i个点,i个点中有j个直径的端点时的长度之和
其中x为树上一点,x为y的父亲,j为x子树去掉y子树后子树内选的点的个数,k为y子树内选的点的个数.接下来开始毒瘤的分类讨论
1. x,y的子树均不包含直径,边(x,y)属于子树内部的边,被算了2次$$dp[x][j+k][0]=\min(dp[x][j+k][0],dp[x][j][0]+dp[y][k][0]+2\cdot len);$$
2. y的子树包含直径的1个端点,则直径一定经过y,边(x,y)在直径上只被算1次$$dp[x][j+k][1]=\min(dp[x][j+k][1],dp[x][j][0]+dp[y][k][1]+len);$$
3. x的子树包含直径的1个端点,y的子树不包含直径的端点,通过边(x,y)与直径相连,被算2次$$dp[x][j+k][1]=\min(dp[x][j+k][1],dp[x][j][1]+dp[y][k][0]+2\cdot len);$$
4. x的子树包含直径的2个端点,y的子树不包含直径的端点,通过边(x,y)与直径相连,被算2次$$dp[x][j+k][2]=\min(dp[x][j+k][2],dp[x][j][2]+dp[y][k][0]+2\cdot len);$$
5. y的子树包含直径的2个端点,则直径一定不经过边(x,y),边(x,y)被算2次$$dp[x][j+k][2]=\min(dp[x][j+k][2],dp[x][j][0]+dp[y][k][2]+2\cdot len);$$
6. x,y的子树各包含直径的1个端点,直径一定过(x,y),边(x,y)被算1次$$dp[x][j+k][2]=\min(dp[x][j+k][2],dp[x][j][1]+dp[y][k][1]+len);$$

### 代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 3005
#define INF 0x3f3f3f3f3f3f3f3f
using namespace std;
inline int qread(){
int x=0,sign=1;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') sign=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
x=x*10+c-'0';
c=getchar();
}
return x*sign;
} int n,m;
struct edge {
int from;
int to;
int next;
long long len;
edge() { }
edge(int u,int v,long long w,int hd) {
from=u;
to=v;
next=hd;
len=w;
}
} E[maxn<<1];
int head[maxn];
int ecnt=0;
void add_edge(int u,int v,long long w) {
E[++ecnt]=edge(u,v,w,head[u]);
head[u]=ecnt;
} int sz[maxn];
long long dp[maxn][maxn][3];
void dfs(int x,int fa) {
sz[x]=1;
dp[x][1][0]=dp[x][1][1]=0;
for(int i=head[x]; i; i=E[i].next) {
int y=E[i].to;
long long len=E[i].len;
if(y!=fa) {
dfs(y,x);
//j类似01背包中的第二层,为防止被算多次,倒序循环
for(int j=min(sz[x],m); j>=0; j--) {//j为x子树去掉y子树后子树内选的点的个数
for(int k=min(sz[y],m-j); k>=0; k--) {//k为y子树内选的点的个数
dp[x][j+k][0]=min(dp[x][j+k][0],dp[x][j][0]+dp[y][k][0]+len*2);
//x,y的子树均不包含直径,边(x,y)属于子树内部的边,被算了2次
dp[x][j+k][1]=min(dp[x][j+k][1],dp[x][j][0]+dp[y][k][1]+len);
//y的子树包含直径的1个端点,则直径一定经过y,边(x,y)在直径上只被算1次
dp[x][j+k][1]=min(dp[x][j+k][1],dp[x][j][1]+dp[y][k][0]+len*2);
//x的子树包含直径的1个端点,y的子树不包含直径的端点,通过边(x,y)与直径相连,被算2次
dp[x][j+k][2]=min(dp[x][j+k][2],dp[x][j][2]+dp[y][k][0]+len*2);
//x的子树包含直径的2个端点,y的子树不包含直径的端点,通过边(x,y)与直径相连,被算2次
dp[x][j+k][2]=min(dp[x][j+k][2],dp[x][j][0]+dp[y][k][2]+len*2);
//y的子树包含直径的2个端点,则直径一定不经过边(x,y),边(x,y)被算2次
dp[x][j+k][2]=min(dp[x][j+k][2],dp[x][j][1]+dp[y][k][1]+len);
//x,y的子树各包含直径的1个端点,直径一定过(x,y),边(x,y)被算1次
}
}
sz[x]+=sz[y];
}
}
}
int main() {
// freopen("tree9.in","r",stdin);
int u,v;
long long w;
n=qread();
m=qread();
for(int i=1;i<n;i++){
u=qread();
v=qread();
w=qread();
add_edge(u,v,w);
add_edge(v,u,w);
}
memset(dp,0x3f,sizeof(dp));
dfs(1,0);
long long ans=INF;
for(int i=1;i<=n;i++){
ans=min(ans,dp[i][m][2]);//根据之前贪心的分析,直径一定经过这k个点中的一些点
}
cout<<ans;
}

BZOJ 4987 (树形DP)的更多相关文章

  1. BZOJ 1040 树形DP+环套树

    就是有n个点n条边,那么有且只有一个环那么用Dfs把在环上的两个点找到.然后拆开,从这条个点分别作树形Dp即可. #include <cstdio> #include <cstrin ...

  2. BZOJ - 2500 树形DP乱搞

    题意:给出一棵树,两个给给的人在第\(i\)天会从节点\(i\)沿着最长路径走,求最长的连续天数\([L,R]\)使得\([L,R]\)为起点的最长路径极差不超过m 求\(1\)到\(n\)的最长路经 ...

  3. BZOJ 4033 树形DP

    http://blog.csdn.net/mirrorgray/article/details/51123741 安利队长blog- 树形dp吧,状态挺显然的,dp[x][j]表示以x为根的子树中,选 ...

  4. [USACO10MAR]伟大的奶牛聚集 BZOJ 1827 树形dp+dfs

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  5. bzoj 4007 树形dp

    题目大意 脸哥最近来到了一个神奇的王国,王国里的公民每个公民有两个下属或者没有下属,这种关系刚好组成一个 n 层的完全二叉树.公民 i 的下属是 2 * i 和 2 * i +1.最下层的公民即叶子节 ...

  6. BZOJ 1369 树形DP

    思路: f[i][j] 表示节点i 染成j时 子树的最小权值 (我会猜这个j很小 你打我吖~) 随便DP一发就好了 (证明我也不会) //By SiriusRen #include <cstdi ...

  7. [BZOJ 4033] [HAOI2015] T1 【树形DP】

    题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...

  8. [BZOJ 1907] 树的路径覆盖 【树形DP】

    题目链接:BZOJ - 1907 题目分析 使用树形 DP,f[x][0] 表示以 x 为根的子树不能与 x 的父亲连接的最小路径数(即 x 是一个折线的拐点). f[x][1] 表示以 x 为根的子 ...

  9. bzoj 4871: [Shoi2017]摧毁“树状图” [树形DP]

    4871: [Shoi2017]摧毁"树状图" 题意:一颗无向树,选两条边不重复的路径,删去选择的点和路径剩下一些cc,求最多cc数. update 5.1 : 刚刚发现bzoj上 ...

随机推荐

  1. Django【第24篇】:JS实现的ajax和同源策略

    JS实现的ajax和同源策略 一.回顾jQuery实现的ajax 首先说一下ajax的优缺点 优点: AJAX使用Javascript技术向服务器发送异步请求: AJAX无须刷新整个页面: 因为服务器 ...

  2. MySQL数据库2表的增删改查

    目录 一.数据表(文件): 1.1增 1.2查看表内数据 1.3改 1.4删除列表 1.5查看库内列表及表结构 1.6复制表结构 二.列类型:(*********) 2.1数字 2.2字符串 2.3时 ...

  3. SSH自动登录脚本

    原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/11926792.html vi app-stg.sh #!/usr/bin/expect -f #aut ...

  4. 大数阶乘(N! Plus)问题

    解题思路 将正整数N从1到N逐位相乘,即1 * 2 * 3...... * (N-1) * N.每次相乘后的值会存储到array[]中,其中一个数组元素存储值中的一位数.当值小于10时直接存储,值大于 ...

  5. celery在项目中的使用

    1 关于celery是一个处理异步耗时任务的框架 由 worker 和broker 和store 3部分组成 worker是来处理消息的工人 broker是来存储请求消息的仓库 store是用来存储结 ...

  6. springboot集成mongoDB需要认证

    报错: Mon Nov 25 01:09:48 CST 2019 There was an unexpected error (type=Internal Server Error, status=5 ...

  7. POJ 1384 Piggy-Bank (完全背包)

    Piggy-Bank 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/F Description Before ACM can d ...

  8. Oracle诊断:使用USER_SEGMENTS分配给表的物理空间大小

    假设我的SCHEMA的名字是abc, 需要知道在这个SCHEMA下的数据容量,可以通过下面的方式. 1.登录SCHEMA abc 2.使用USER_SEGMENTS查看SCHEMA abc数据容量 S ...

  9. 如何删除由Automater创建的服务

    想要设置两个实用的快捷设置(如何设置): 1.复制当前文件或者文件夹路径 2.在终端打开文件夹 然后想到可以用mac自带的自动操作这款软件,英文叫Automater.接着发现,显示路径栏后,直接就提供 ...

  10. canvas 时钟案例

    <!doctype html><html><head> <meta charset="UTF-8"> <meta name=& ...