[BZOI 3994] [SDOI2015]约数个数和

题面

设d(x)为x的约数个数,给定N、M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\)

T组询问,\(N,M,T \leq 50000\)

分析

首先有一个结论

\[d(nm)= \sum _{i |n} \sum _{j|m} [gcd(i,j)=1]
\]

这是因为nm的约数都可以表示为\(i \times \frac{m}{j}\)的形式,并且为了不重复算,要保证\(gcd(i,j)=1\)

因此,我们可以开始推式子

\[ans= \sum_{p=1}^n \sum_{q=1}^m \sum_{i|p} \sum _{j|q} [gcd(i,j)=1]
\]

注意到每对\((i,j)\)会对p,q中他们的倍数产生\(\lfloor \frac{n}{i} \rfloor \times \lfloor \frac{m}{j} \rfloor\) 的贡献

\[= \sum_{i=1}^n \sum_{j=1} ^m [gcd(i,j)=1] \lfloor \frac{n}{i} \rfloor \lfloor \frac{m}{j} \rfloor
\]

\[= \sum_{i=1}^n \sum_{j=1} ^m \varepsilon (gcd(i,j)) \lfloor \frac{n}{i} \rfloor \lfloor \frac{m}{j} \rfloor
\]

根据\(\varepsilon (n) = \sum_{d|n} \mu(d)\)

\[= \sum_{i=1}^n \sum_{j=1} ^m \lfloor \frac{n}{i} \rfloor \lfloor \frac{m}{j} \rfloor \sum_{d|gcd(i,j)} \mu(d)
\]

改变求和顺序,先枚举d,显然若\(d|gcd(i,j)\),则\(d|i,d|j\),

直接把i替换为d的倍数du,j替换为d的倍数dv(\(u,v \in N^+,du\leq n,dv \leq m\))

\[= \sum_{d=1}^{min(n,m)} \mu(d) \sum_{u=1}^{\lfloor n/d \rfloor} \sum_{v=1}^{\lfloor m/d \rfloor} \lfloor \frac{n}{du} \rfloor \lfloor \frac{m}{dv} \rfloor
\]

\[= \sum_{d=1}^{min(n,m)} \mu(d) \sum_{u=1}^{\lfloor n/d \rfloor} \sum_{v=1}^{\lfloor m/d \rfloor} \lfloor \frac{ \lfloor n/d \rfloor}{u} \rfloor \lfloor \frac{\lfloor m/d \rfloor}{v} \rfloor
\]

\[= \sum_{d=1}^{min(n,m)} \mu(d) \sum_{u=1}^{\lfloor n/d \rfloor} \lfloor \frac{ \lfloor n/d \rfloor}{u} \rfloor \sum_{v=1}^{\lfloor m/d \rfloor} \lfloor \frac{\lfloor m/d \rfloor}{v} \rfloor
\]

令\(g(n) = \sum _{d=1}^n \lfloor \frac{n}{d} \rfloor\)

\[=\sum_{d=1}^{min(n,m)} \mu(d) g(\lfloor \frac{n}{d} \rfloor) g(\lfloor \frac{m}{d} \rfloor)
\]

考虑如何快速求值。单个\(g(n)\)可以运用数论分块在\(O(\sqrt n)\)的时间内求出,总时间复杂度\(O(n \sqrt n)\). 然后线性筛出\(\mu\),以及\(\mu,g\)的前缀和

每次询问用数论分块的方法枚举d即可,总时间复杂度\(O(n \sqrt n +T \sqrt n)\)

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 50000
using namespace std;
typedef long long ll;
int t;
int n,m;
int cnt;
bool vis[maxn+5];
int prime[maxn+5];
int mu[maxn+5];
ll sum_mu[maxn+5];
int g[maxn+5];
void sieve(int n){
mu[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i]){
prime[++cnt]=i;
mu[i]=-1;
}
for(int j=1;j<=cnt&&i*prime[j]<=n;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
mu[i*prime[j]]=0;
break;
}else{
mu[i*prime[j]]=-mu[i];
}
}
}
for(int i=1;i<=n;i++) sum_mu[i]=sum_mu[i-1]+mu[i];
for(int i=1;i<=n;i++){
int l,r;
for(l=1;l<=i;l=r+1){
r=i/(i/l);
g[i]+=(ll)(r-l+1)*(i/l);
}
}
} ll calc(int n,int m){
int l,r;
if(n<m) swap(n,m);
ll ans=0;
for(l=1;l<=m;l=r+1){
r=min(n/(n/l),m/(m/l));
ans+=(sum_mu[r]-sum_mu[l-1])*g[n/l]*g[m/l];
}
return ans;
} int main(){
sieve(maxn);
scanf("%d",&t);
while(t--){
scanf("%d %d",&n,&m);
printf("%lld\n",calc(n,m));
}
}

[BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)的更多相关文章

  1. BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...

  2. BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]

    2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...

  3. BZOJ.3994.[SDOI2015]约数个数和(莫比乌斯反演)

    题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] \(Solution\) 有结论:\[d(nm)=\sum_{i|d}\sum_{j|d ...

  4. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  5. 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演

    [BZOJ3994][SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...

  6. [SDOI2015]约数个数和 莫比乌斯反演

    ---题面--- 题解: 为什么SDOI这么喜欢莫比乌斯反演,,, 首先有一个结论$$d(ij) = \sum_{x|i}\sum_{y|j}[gcd(x, y) == 1]$$为什么呢?首先,可以看 ...

  7. luogu P3327 [SDOI2015]约数个数和 莫比乌斯反演

    题面 我的做法基于以下两个公式: \[[n=1]=\sum_{d|n}\mu(d)\] \[\sigma_0(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\] 其中\(\ ...

  8. 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)

    题目描述 设d(x)为x的约数个数,给定N.M,求 \sum^N_{i=1}\sum^M_{j=1}d(ij)∑i=1N​∑j=1M​d(ij) 输入输出格式 输入格式: 输入文件包含多组测试数据.第 ...

  9. BZOJ3994: [SDOI2015]约数个数和(莫比乌斯反演)

    Description  设d(x)为x的约数个数,给定N.M,求     Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Out ...

随机推荐

  1. bzoj5090 [Lydsy1711月赛]组题 分数规划

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5090 题解 令 \(s_i\) 表示 \(a_i\) 的前缀和. 那么平均难度系数就是 \[ ...

  2. Spring Boot整合Mybatis出现错误java.lang.IllegalStateException: Cannot load driver class:com.mysql.cj.jdbc.Driver

    错误描述: Caused by: java.lang.IllegalStateException: Cannot load driver class: com.mysql.cj.jdbc.Driver ...

  3. 详述 DB2 分页查询及 Java 实现的示例_java - JAVA

    文章来源:嗨学网 敏而好学论坛www.piaodoo.com 欢迎大家相互学习 博主说:有时候,我们需要对数据库中现有的数据进行大量处理操作(例如表中的某个字段需要全部更新等),如果直接使用selec ...

  4. 花式赋值、列表、字典、解压缩、input()、格式化学习笔记

    目录 花式赋值 列表(list) 字典(dict) 解压缩 input()与用户交互 格式化的三种方式 f_String格式化(important) %s.%d占位符 format 格式化(不常用) ...

  5. 【SaltStack官方版】—— Events&Reactor系统—EVENT SYSTEM

    Events&Reactor系统 EVENT SYSTEM The Salt Event System is used to fire off events enabling third pa ...

  6. [洛谷P4436] HNOI/AHOI2018 游戏

    问题描述 一次小G和小H在玩寻宝游戏,有n个房间排成一列,编号为1,2,...,n,相邻的房间之间都有一道门.其中一部分门上锁(因此需要有对应的钥匙才能开门),其余的门都能直接打开.现在小G告诉了小H ...

  7. 对redis高并发测试的研究

    以下引用大神的: 测试项目: https://github.com/14251104246/redis-demo.git 准备 使用docker-compose命令启动redis服务器(可以用其他方式 ...

  8. 【PowerOJ1746&网络流24题】航空路线问题(费用流)

    题意: 思路: [问题分析] 求最长两条不相交路径,用最大费用最大流解决. [建模方法] 把第i个城市拆分成两个顶点<i.a>,<i.b>. 1.对于每个城市i,连接(< ...

  9. (16)Python3.5+Pyqt5+PyCharm+Opencv3.3+Qtdesigner开发环境配置

    一:Python3.3和Pyqt5的安装 注意:两个的版本一定要对应,一定要对应,一定要对应,重要的事情说三遍. 因为我自己的电脑是64位的,所以我下载的都是64位版本的,且都是3.5版本的:这两个一 ...

  10. $FFT/NTT/FWT$题单&简要题解

    打算写一个多项式总结. 虽然自己菜得太真实了. 好像四级标题太小了,下次写博客的时候再考虑一下. 模板 \(FFT\)模板 #include <iostream> #include < ...