实验6、Python-OpenCV宽度测量
Your browser does not support the audio element.
一、 题目描述
测量所给图片的高度,即上下边缘间的距离。

思路:
- 将图片进行阈值操作得到二值化图片。
- 截取只包含上下边框的部分,以便于后续的轮廓提取
- 轮廓检测
- 得到结果
二、 实现过程
1.用于给图片添加中文字符
#用于给图片添加中文字符
def ImgText_CN(img, text, left, top, textColor=(0, 255, 0), textSize=20):
if (isinstance(img, np.ndarray)): #判断是否为OpenCV图片类型
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img)
fontText = ImageFont.truetype(r'C:\Windows\Fonts\simsun.ttc', textSize, encoding="utf-8") ##中文字体
draw.text((left, top), text, textColor, font=fontText) #写文字
return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
2.实现图片反色功能
#实现图片反色功能
def PointInvert(img):
height, width = img.shape #获取图片尺寸
for i in range(height):
for j in range(width):
pi = img[i, j]
img[i, j] = 255 - pi
return img
4.边缘检测
# canny边缘检测
edges = cv2.Canny(th, 30, 70)
res=PointInvert(edges) #颜色反转
#显示图片
cv2.imshow('original', th) #显示二值化后的图,主题为白色,背景为黑色 更加容易找出轮廓
key = cv2.waitKey(0)
if key==27: #按esc键时,关闭所有窗口
print(key)
cv2.destroyAllWindows()
5.轮廓操作
contours, hierarchy = cv2.findContours(th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) #得到轮廓
cnt = contours[0] #取出轮廓
x, y, w, h = cv2.boundingRect(cnt) #用一个矩形将轮廓包围
img_gray = cv2.cvtColor(res, cv2.COLOR_GRAY2BGR) #将灰度转化为彩色图片方便画图
cv2.line(img_gray, (x, y), (x + w, y), (0,0,255), 2, 5) #上边缘
cv2.line(img_gray, (x, y+h), (x + w, y+h), (0, 0, 255), 2, 5) #下边缘
img1[80:230, 90:230] = img_gray #用带有上下轮廓的图替换掉原图的对应部分
6.显示图片
res1=ImgText_CN(img1, '宽度%d'%h, 25, 25, textColor=(0, 255, 0), textSize=30) #绘制文字
#显示图片
cv2.imshow('original', res1)
key = cv2.waitKey(0)
if key==27: #按esc键时,关闭所有窗口
print(key)
cv2.destroyAllWindows()
7.完整代码
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
#用于给图片添加中文字符
def ImgText_CN(img, text, left, top, textColor=(0, 255, 0), textSize=20):
if (isinstance(img, np.ndarray)): #判断是否为OpenCV图片类型
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img)
fontText = ImageFont.truetype(r'C:\Windows\Fonts\simsun.ttc', textSize, encoding="utf-8") ##中文字体
draw.text((left, top), text, textColor, font=fontText) #写文字
return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
#实现图片反色功能
def PointInvert(img):
height, width = img.shape #获取图片尺寸
for i in range(height):
for j in range(width):
pi = img[i, j]
img[i, j] = 255 - pi
return img
img=cv2.imread("gongjian1.bmp",0) #加载彩色图
img1=cv2.imread("gongjian1.bmp",1) #加载灰度图
recimg = img[80:230, 90:230] #截取需要的部分
img2 = img1[80:230, 90:230] #截取需要的部分
ret, th = cv2.threshold(recimg, 90, 255, cv2.THRESH_BINARY) #阈值操作二值化
# canny边缘检测
edges = cv2.Canny(th, 30, 70)
res=PointInvert(edges) #颜色反转
#显示图片
cv2.imshow('original', th) #显示二值化后的图,主题为白色,背景为黑色 更加容易找出轮廓
key = cv2.waitKey(0)
if key==27: #按esc键时,关闭所有窗口
print(key)
cv2.destroyAllWindows()
contours, hierarchy = cv2.findContours(th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) #得到轮廓
cnt = contours[0] #取出轮廓
x, y, w, h = cv2.boundingRect(cnt) #用一个矩形将轮廓包围
img_gray = cv2.cvtColor(res, cv2.COLOR_GRAY2BGR) #将灰度转化为彩色图片方便画图
cv2.line(img_gray, (x, y), (x + w, y), (0,0,255), 2, 5) #上边缘
cv2.line(img_gray, (x, y+h), (x + w, y+h), (0, 0, 255), 2, 5) #下边缘
img1[80:230, 90:230] = img_gray #用带有上下轮廓的图替换掉原图的对应部分
res1=ImgText_CN(img1, '宽度%d'%h, 25, 25, textColor=(0, 255, 0), textSize=30) #绘制文字
#显示图片
cv2.imshow('original', res1)
key = cv2.waitKey(0)
if key==27: #按esc键时,关闭所有窗口
print(key)
cv2.destroyAllWindows()
三、 运行结果(效果)


四、 问题及解决方法
红色轮廓没有显示,解决方案:将灰度图转化为彩色图
五、 实验总结
学习了OpenCV的宽度测量,遇到了作业问题自己解决了,锻炼了自己的能力。
实验6、Python-OpenCV宽度测量的更多相关文章
- python opencv识别蓝牌车牌号 之 取出车牌号 (1/3)
概述 车牌识别是计算机视频图像识别技术在车辆牌照识别中的一种应用,通常来讲如果结合opencv进行车牌识别主要分为四个大步骤,分别为: 图像采集 车牌定位 分割车牌字符 字符识别 当然,如果结合了机器 ...
- 【python+opencv】直线检测+圆检测
Python+OpenCV图像处理—— 直线检测 直线检测理论知识: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进 ...
- Python + opencv 实现图片文字的分割
实现步骤: 1.通过水平投影对图形进行水平分割,获取每一行的图像: 2.通过垂直投影对分割的每一行图像进行垂直分割,最终确定每一个字符的坐标位置,分割出每一个字符: 先简单介绍一下投影法:分别在水平和 ...
- 【Python | opencv+PIL】常见操作(创建、添加帧、绘图、读取等)的效率对比及其优化
一.背景 本人准备用python做图像和视频编辑的操作,却发现opencv和PIL的效率并不是很理想,并且同样的需求有多种不同的写法并有着不同的效率.见全网并无较完整的效率对比文档,遂决定自己丰衣足食 ...
- python+opencv实现车牌定位
写在前面 HIT大三上学期视听觉信号处理课程中视觉部分的实验三,经过和学长们实验的对比发现每一级实验要求都不一样,因此这里标明了是2019年秋季学期的视觉实验三. 由于时间紧张,代码没有进行任何优化, ...
- 搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台
搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台 By 子敬叔叔 最近在学习麦好的<机器学习实践指南案例应用解析第二版>,在安装学习环境的时候 ...
- .NET + OpenCV & Python + OpenCV 配置
最近需要做一个图像识别的GUI应用,权衡了Opencv+ 1)QT,2)Python GUI,3).NET后选择了.NET... 本文给出C#+Opencv和Python+Opencv的相应参考,节省 ...
- RPi 2B python opencv camera demo example
/************************************************************************************** * RPi 2B pyt ...
- Python+OpenCV图像处理(一)
Python+OpenCV图像处理(一): 读取,写入和展示图片 调用摄像头拍照 调用摄像头录制视频 1. 读取.写入和展示图片 图像读入:cv2.imread() 使用函数cv2.imread() ...
随机推荐
- 标准库shutil
shutil模块是高级的 文件.文件夹.压缩包 处理模块. 下面是关于其中各种方法的使用介绍: 1.shutil.copyfileobj(fsrc, fdst[, length])将文件内容拷贝到另一 ...
- 如何把字符串数组从 Swift 传递给 C
作者:Natasha The Robot,原文链接,原文日期:2016-10-27译者:BigbigChai:校对:walkingway:定稿:CMB Swift 允许我们将原生的字符串直接传递给一个 ...
- 如何设计高并发web应用
所谓高并发,就是同一时间有很多流量(通常指用户)访问程序的接口.页面及其他资源,解决高并发就是当流量峰值到来时保证程序的稳定性. 我们一般用QPS(每秒查询数,又叫每秒请求数)来衡量程序的综合性能 ...
- CodeForces - 1102B Array K-Coloring
B. Array K-Coloring time limit per test2 seconds memory limit per test256 megabytes inputstandard in ...
- H - Food HDU - 4292 网络流
题目 You, a part-time dining service worker in your college’s dining hall, are now confused with a n ...
- Java 四种权限修饰符
Java 四种权限修饰符访问权限 public protected (default) private 同一个类(我自己) yes yes yes yes 同一包(我邻居) yes yes yes n ...
- Dynamics 365 基于 Sql Server 2017 安装 报表 问题
如果使用SQL2017 安装D365 会发现 SSRS与AD不能在同一台服务器上,因为无法安装SSRS,而无SSRS 则D365是无法继续安装的. 所以解决方法有二个: 1.另外准备一台服务器,不需要 ...
- Coursera课程笔记----计算导论与C语言基础----Week 2
计算机的历史与未来(Week 2) 计算机历史 早期计算机:手工计算器➡️机械计算器➡️计算机原型 现代计算机:电子管计算机➡️晶体管计算机➡️集成电路计算机➡️超大规模集成电路 早期的手工计算辅助工 ...
- 某科学的PID算法学习笔记
最近,在某社团的要求下,自学了PID算法.学完后,深切地感受到PID算法之强大.PID算法应用广泛,比如加热器.平衡车.无人机等等,是自动控制理论中比较容易理解但十分重要的算法. 下面是博主学习过程中 ...
- springBoot整合Spring-Data-JPA, Redis Redis-Desktop-Manager2020 windows
源码地址:https://gitee.com/ytfs-dtx/SpringBoot Redis-Desktop-Manager2020地址: https://ytsf.lanzous.com/b01 ...