Problem Description

Almost everyone likes kebabs nowadays (Here a kebab means pieces of meat grilled on a long thin stick). Have you, however, considered about the hardship of a kebab roaster while enjoying the delicious food? Well, here's a chance for you to help the poor roaster make sure whether he can deal with the following orders without dissatisfying the customers.

Now N customers is coming. Customer i will arrive at time si (which means the roaster cannot serve customer i until time si). He/She will order ni kebabs, each one of which requires a total amount of ti unit time to get it well-roasted, and want to get them before time ei(Just at exactly time ei is also OK). The roaster has a big grill which can hold an unlimited amount of kebabs (Unbelievable huh? Trust me, it’s real!). But he has so little charcoal that at most M kebabs can be roasted at the same time. He is skillful enough to take no time changing the kebabs being roasted. Can you help him determine if he can meet all the customers’ demand?

Oh, I forgot to say that the roaster needs not to roast a single kebab in a successive period of time. That means he can divide the whole ti unit time into k (1<=k<=ti) parts such that any two adjacent parts don’t have to be successive in time. He can also divide a single kebab into k (1<=k<=ti) parts and roast them simultaneously. The time needed to roast one part of the kebab well is linear to the amount of meat it contains. So if a kebab needs 10 unit time to roast well, he can divide it into 10 parts and roast them simultaneously just one unit time. Remember, however, a single unit time is indivisible and the kebab can only be divided into such parts that each needs an integral unit time to roast well.

 Input
There are multiple test cases. The first line of each case contains two positive integers N and M. N is the number of customers and M is the maximum kebabs the grill can roast at the same time. Then follow N lines each describing one customer, containing four integers: si (arrival time), ni (demand for kebabs), ei (deadline) and ti (time needed for roasting one kebab well).

There is a blank line after each input block.

Restriction:

1 <= N <= 200, 1 <= M <= 1,000

1 <= ni, ti <= 50

1 <= si < ei <= 1,000,000
 Output
If the roaster can satisfy all the customers, output “Yes” (without quotes). Otherwise, output “No”.
 Sample Input
2 10
1 10 6 3
2 10 4 2
2 10
1 10 5 3
2 10 4 2
 Sample Output
Yes
No
这个题就是基本的最大流,怎么建图,源点到每个人建边,流量设置为点羊肉串数量。然后每个人到他那个时间段的每一个边都设流量为INF,然后,时间点到汇点的边设置为M即,烤炉最多一次考多少串串。但是这里要考虑到点的范围1000000,这样建图真的会超时,我看了RQ的博客,看到了这里是可以离散化建图,就是说,将每个点看成一段时间的集合,如过时间有交叉就要把那段时间单独处理,这样它覆盖了多少点,就有多少个M然后最大流。 
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<vector>
#define INF 1e9
using namespace std;
const int maxn=600+5; struct Edge
{
int from,to,cap,flow;
Edge(){}
Edge(int f,int t,int c,int fl):from(f),to(t),cap(c),flow(fl){}
}; struct Dinic
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
int d[maxn];
int cur[maxn];
bool vis[maxn]; void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=0;i<n;++i) G[i].clear();
} void AddEdge(int from,int to,int cap)
{
edges.push_back(Edge(from,to,cap,0));
edges.push_back(Edge(to,from,0,0));
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
} bool BFS()
{
queue<int> Q;
memset(vis,0,sizeof(vis));
vis[s]=true;
d[s]=0;
Q.push(s);
while(!Q.empty())
{
int x=Q.front(); Q.pop();
for(int i=0;i<G[x].size();++i)
{
Edge &e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
d[e.to]=d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if(x==t || a==0) return a;
int flow=0,f;
for(int& i=cur[x];i<G[x].size();++i)
{
Edge &e=edges[G[x][i]];
if(d[e.to]==d[x]+1 && (f=DFS(e.to,min(a,e.cap-e.flow) ) )>0)
{
e.flow +=f;
edges[G[x][i]^1].flow -=f;
flow +=f;
a -=f;
if(a==0) break;
}
}
return flow;
} int max_flow()
{
int ans=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
ans += DFS(s,INF);
}
return ans;
}
}DC; int N,M;
int s[maxn],n[maxn],e[maxn],t[maxn];
int time[maxn];
int full_flow; int main()
{
while(scanf("%d%d",&N,&M)==2)
{
full_flow=0;
int cnt=0;
for(int i=1;i<=N;i++)
{
scanf("%d%d%d%d",&s[i],&n[i],&e[i],&t[i]);
time[cnt++]=s[i];
time[cnt++]=e[i];
full_flow += n[i]*t[i];
}
sort(time,time+cnt);
cnt = unique(time,time+cnt)-time;//去重
int src=0,dst=N+cnt+1;
DC.init(N+cnt+2,src,dst); for(int i=1;i<=N;i++) DC.AddEdge(src,i,n[i]*t[i]);
for(int i=1;i<=cnt-1;++i)
{
DC.AddEdge(N+i,dst,(time[i]-time[i-1])*M);
for(int j=1;j<=N;++j)
if(s[j]<=time[i-1] && time[i]<=e[j])
DC.AddEdge(j,N+i,INF);
}
printf("%s\n",DC.max_flow()==full_flow?"Yes":"No");
}
return 0;
}

图论--网络流--最大流 HDU 2883 kebab(离散化)的更多相关文章

  1. 图论--网络流--最大流 HDU 3572 Task Schedule(限流建图,超级源汇)

    Problem Description Our geometry princess XMM has stoped her study in computational geometry to conc ...

  2. HDU 2883 kebab(最大流)

    HDU 2883 kebab 题目链接 题意:有一个烧烤机,每次最多能烤 m 块肉.如今有 n 个人来买烤肉,每一个人到达时间为 si.离开时间为 ei,点的烤肉数量为 ci,每一个烤肉所需烘烤时间为 ...

  3. hdu 2883 kebab 网络流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2883 Almost everyone likes kebabs nowadays (Here a ke ...

  4. 图论--网络流--最小割 HDU 2485 Destroying the bus stations(最短路+限流建图)

    Problem Description Gabiluso is one of the greatest spies in his country. Now he's trying to complet ...

  5. HDU 2883 kebab

    kebab Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID: 2883 ...

  6. hdu 2883 kebab(时间区间压缩 &amp;&amp; dinic)

    kebab Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  7. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  8. 网络流 最大流HDU 3549

    //////////在这幅图中我们首先要增广1->2->4->6,这时可以获得一个容量为2的流,但是如果不建立4->2反向弧的话,则无法进一步增广,最终答案为2,显然是不对的, ...

  9. 网络流(最大流) HDU 1565 方格取数(1) HDU 1569 方格取数(2)

      HDU 1565 方格取数(1) 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的 ...

随机推荐

  1. SQLAlchemy查询

    SQLAlchemy查询 结果查询: from databases.wechat import User from config import session def search(): result ...

  2. Linux网络安全篇,配置Yum源(二),阿里Yum源

    官网教程: https://opsx.alibaba.com/mirror 1.下载配置文件到 /etc/yum.repos.d 目录 wget -O /etc/yum.repos.d/CentOS- ...

  3. 廖雪峰 Git 教程 + Git-Cheat-Sheet 学习总结

    廖雪峰 Git 教程 + Git-Cheat-Sheet 学习总结 本教程主要是个人的 Git 学习总结. 主要参考博客: 廖雪峰 Git 教程 Git-Cheat-Sheet 文章目录 廖雪峰 Gi ...

  4. Mysql fundamental knowledge

    Mysql 5.1, 5.5 are more stable than other versions. postgresql has more strict "sql standard &q ...

  5. Powershell抓取网页信息

    一般经常使用invoke-restmethod和invoke-webrequest这两个命令来获取网页信息,如果对象格式是json或者xml会更容易 1.invoke-restmethod 我们可以用 ...

  6. 刨根问底系列(2)——stdin、stdout、FILE结构体、缓冲区和fflush的理解

    stdin.stdout.FILE结构体.缓冲区和fflush理解 因为之前调试代码时, printf输出的字符串总是被截断了输出(先输出部分, 再输出剩余的), 当时调试了很久, 才知道问题所在, ...

  7. JNDI数据源的配置及使用 (2010-11-21 21:16:43)转载▼

    JNDI数据源的配置及使用 (2010-11-21 21:16:43)转载▼ 标签: 杂谈 分类: 数据库 数据源的作用 JDBC操作的步骤: 1. 加载驱动程序 2. 连接数据库 3. 操作数据库 ...

  8. 关于连接内部服务器以及redis缓存基本操作

    1.linux命令行远程连接内部服务器 ssh -p 6637 mndevops@172.18.11.183 //建立连接命令 端口号和用户名+ip 输入密码 ./redis-cli 进入redis数 ...

  9. AQS系列(七)- 终篇:AQS总结

    前言 本文是对之前AQS系列文章的一个小结,首先看看以下几个问题: 1.ReentrantLock和ReentrantReadWriteLock的可重入特性是如何实现的? 2.哪个变量控制着锁是否被占 ...

  10. ChaosBlade--动态脚本实现 Java 实验场景

    动态脚本实现 : 参考文档:https://github.com/chaosblade-io/chaosblade/wiki/%E5%8A%A8%E6%80%81%E8%84%9A%E6%9C%AC% ...