Problem Description

Almost everyone likes kebabs nowadays (Here a kebab means pieces of meat grilled on a long thin stick). Have you, however, considered about the hardship of a kebab roaster while enjoying the delicious food? Well, here's a chance for you to help the poor roaster make sure whether he can deal with the following orders without dissatisfying the customers.

Now N customers is coming. Customer i will arrive at time si (which means the roaster cannot serve customer i until time si). He/She will order ni kebabs, each one of which requires a total amount of ti unit time to get it well-roasted, and want to get them before time ei(Just at exactly time ei is also OK). The roaster has a big grill which can hold an unlimited amount of kebabs (Unbelievable huh? Trust me, it’s real!). But he has so little charcoal that at most M kebabs can be roasted at the same time. He is skillful enough to take no time changing the kebabs being roasted. Can you help him determine if he can meet all the customers’ demand?

Oh, I forgot to say that the roaster needs not to roast a single kebab in a successive period of time. That means he can divide the whole ti unit time into k (1<=k<=ti) parts such that any two adjacent parts don’t have to be successive in time. He can also divide a single kebab into k (1<=k<=ti) parts and roast them simultaneously. The time needed to roast one part of the kebab well is linear to the amount of meat it contains. So if a kebab needs 10 unit time to roast well, he can divide it into 10 parts and roast them simultaneously just one unit time. Remember, however, a single unit time is indivisible and the kebab can only be divided into such parts that each needs an integral unit time to roast well.

 Input
There are multiple test cases. The first line of each case contains two positive integers N and M. N is the number of customers and M is the maximum kebabs the grill can roast at the same time. Then follow N lines each describing one customer, containing four integers: si (arrival time), ni (demand for kebabs), ei (deadline) and ti (time needed for roasting one kebab well).

There is a blank line after each input block.

Restriction:

1 <= N <= 200, 1 <= M <= 1,000

1 <= ni, ti <= 50

1 <= si < ei <= 1,000,000
 Output
If the roaster can satisfy all the customers, output “Yes” (without quotes). Otherwise, output “No”.
 Sample Input
2 10
1 10 6 3
2 10 4 2
2 10
1 10 5 3
2 10 4 2
 Sample Output
Yes
No
这个题就是基本的最大流,怎么建图,源点到每个人建边,流量设置为点羊肉串数量。然后每个人到他那个时间段的每一个边都设流量为INF,然后,时间点到汇点的边设置为M即,烤炉最多一次考多少串串。但是这里要考虑到点的范围1000000,这样建图真的会超时,我看了RQ的博客,看到了这里是可以离散化建图,就是说,将每个点看成一段时间的集合,如过时间有交叉就要把那段时间单独处理,这样它覆盖了多少点,就有多少个M然后最大流。 
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<vector>
#define INF 1e9
using namespace std;
const int maxn=600+5; struct Edge
{
int from,to,cap,flow;
Edge(){}
Edge(int f,int t,int c,int fl):from(f),to(t),cap(c),flow(fl){}
}; struct Dinic
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
int d[maxn];
int cur[maxn];
bool vis[maxn]; void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=0;i<n;++i) G[i].clear();
} void AddEdge(int from,int to,int cap)
{
edges.push_back(Edge(from,to,cap,0));
edges.push_back(Edge(to,from,0,0));
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
} bool BFS()
{
queue<int> Q;
memset(vis,0,sizeof(vis));
vis[s]=true;
d[s]=0;
Q.push(s);
while(!Q.empty())
{
int x=Q.front(); Q.pop();
for(int i=0;i<G[x].size();++i)
{
Edge &e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
d[e.to]=d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if(x==t || a==0) return a;
int flow=0,f;
for(int& i=cur[x];i<G[x].size();++i)
{
Edge &e=edges[G[x][i]];
if(d[e.to]==d[x]+1 && (f=DFS(e.to,min(a,e.cap-e.flow) ) )>0)
{
e.flow +=f;
edges[G[x][i]^1].flow -=f;
flow +=f;
a -=f;
if(a==0) break;
}
}
return flow;
} int max_flow()
{
int ans=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
ans += DFS(s,INF);
}
return ans;
}
}DC; int N,M;
int s[maxn],n[maxn],e[maxn],t[maxn];
int time[maxn];
int full_flow; int main()
{
while(scanf("%d%d",&N,&M)==2)
{
full_flow=0;
int cnt=0;
for(int i=1;i<=N;i++)
{
scanf("%d%d%d%d",&s[i],&n[i],&e[i],&t[i]);
time[cnt++]=s[i];
time[cnt++]=e[i];
full_flow += n[i]*t[i];
}
sort(time,time+cnt);
cnt = unique(time,time+cnt)-time;//去重
int src=0,dst=N+cnt+1;
DC.init(N+cnt+2,src,dst); for(int i=1;i<=N;i++) DC.AddEdge(src,i,n[i]*t[i]);
for(int i=1;i<=cnt-1;++i)
{
DC.AddEdge(N+i,dst,(time[i]-time[i-1])*M);
for(int j=1;j<=N;++j)
if(s[j]<=time[i-1] && time[i]<=e[j])
DC.AddEdge(j,N+i,INF);
}
printf("%s\n",DC.max_flow()==full_flow?"Yes":"No");
}
return 0;
}

图论--网络流--最大流 HDU 2883 kebab(离散化)的更多相关文章

  1. 图论--网络流--最大流 HDU 3572 Task Schedule(限流建图,超级源汇)

    Problem Description Our geometry princess XMM has stoped her study in computational geometry to conc ...

  2. HDU 2883 kebab(最大流)

    HDU 2883 kebab 题目链接 题意:有一个烧烤机,每次最多能烤 m 块肉.如今有 n 个人来买烤肉,每一个人到达时间为 si.离开时间为 ei,点的烤肉数量为 ci,每一个烤肉所需烘烤时间为 ...

  3. hdu 2883 kebab 网络流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2883 Almost everyone likes kebabs nowadays (Here a ke ...

  4. 图论--网络流--最小割 HDU 2485 Destroying the bus stations(最短路+限流建图)

    Problem Description Gabiluso is one of the greatest spies in his country. Now he's trying to complet ...

  5. HDU 2883 kebab

    kebab Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID: 2883 ...

  6. hdu 2883 kebab(时间区间压缩 &amp;&amp; dinic)

    kebab Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  7. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  8. 网络流 最大流HDU 3549

    //////////在这幅图中我们首先要增广1->2->4->6,这时可以获得一个容量为2的流,但是如果不建立4->2反向弧的话,则无法进一步增广,最终答案为2,显然是不对的, ...

  9. 网络流(最大流) HDU 1565 方格取数(1) HDU 1569 方格取数(2)

      HDU 1565 方格取数(1) 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的 ...

随机推荐

  1. 多角度让你彻底明白yield语法糖的用法和原理及在C#函数式编程中的作用

    如果大家读过dapper源码,你会发现这内部有很多方法都用到了yield关键词,那yield到底是用来干嘛的,能不能拿掉,拿掉与不拿掉有多大的差别,首先上一段dapper中精简后的Query方法,先让 ...

  2. 中阶d03 JDBC 使用

    1.首先在数据库中创建表 2.安装mysql驱动 java开发环境中导入jdbc连接mysql的jar包 mysql-connector-java-5.1.7-bin.jar 下载地址:https:/ ...

  3. 31.1 Exception 的method :getMessage()、 printStackTrace()

    package day31_exception; import java.lang.Exception; /* * Throwable的常用方法: String getMessage() :原因 St ...

  4. HAproxy shell脚本安装

    #!/bin/bash #需要lua-..tar.gz在家目录下 # 编译安装lua #安装编译环境需要的包 yum -y install gcc openssl-devel pcre-devel s ...

  5. matplotlib TransformNode类

    TransformNode 是所有参与变换的类和所有需要无效自己或祖先的类的基类 方法: __init__(shorthand_name=None): 参数 [shorthand_name]: 别名 ...

  6. GO代码风格指南 Uber Go (转载)

    原文地址:https://github.com/uber-go/guide/blob/master/style.md 译文出处:https://github.com/uber-go/guide 本文永 ...

  7. 最近遇到adb connection 问题,总结一下

    最近eclipse总是遇到adb connection问题,网上搜索了一些解决方法,在cmd tool工具下adb kill-server ,adb start-server ,甚至重启都无效.然后我 ...

  8. [总结]RMQ问题&ST算法

    目录 一.ST算法 二.ST算法の具体实现 1. 初始化 2. 求出ST表 3. 询问 三.例题 例1:P3865 [模板]ST表 例2:P2880 [USACO07JAN]平衡的阵容Balanced ...

  9. python 自动打包,发送邮件(包括附件)至多个收件人(qq邮箱,163邮箱)

    -----------------------------打包部分---------------------------------- import zipfile def zipDir(dirpat ...

  10. Python-selenium-自动化测试模型

    1.线性测试 优势:每一个脚本都是完整独立的,每一个脚本对应一个测试用例 缺点:开发成本高,会有重复操作重复脚本:维护成本也高,修改重复操作的脚本时,要逐一进行修改. 2.模块化驱动测试 把重复的操作 ...