Spark 两种方法计算分组取Top N
Spark 分组取Top N运算
大数据处理中,对数据分组后,取TopN是非常常见的运算。
下面我们以一个例子来展示spark如何进行分组取Top的运算。
1、RDD方法分组取TopN
from pyspark import SparkContext
sc = SparkContext()
准备数据,把数据转换为rdd格式
data_list = [
(0, "cat26", 130.9), (0, "cat13", 122.1), (0, "cat95", 119.6), (0, "cat105", 11.3),
(1, "cat67", 128.5), (1, "cat4", 126.8), (1, "cat13", 112.6), (1, "cat23", 15.3),
(2, "cat56", 139.6), (2, "cat40", 129.7), (2, "cat187", 127.9), (2, "cat68", 19.8),
(3, "cat8", 135.6)
]
data = sc.parallelize(data_list)
data.collect()
[(0, 'cat26', 130.9),
(0, 'cat13', 122.1),
(0, 'cat95', 119.6),
(0, 'cat105', 11.3),
(1, 'cat67', 128.5),
(1, 'cat4', 126.8),
(1, 'cat13', 112.6),
(1, 'cat23', 15.3),
(2, 'cat56', 139.6),
(2, 'cat40', 129.7),
(2, 'cat187', 127.9),
(2, 'cat68', 19.8),
(3, 'cat8', 135.6)]
对数据使用groupBy操作来分组。可以看到分组后数据为(key, list_data)
d1 = data.groupBy(lambda x:x[0])
temp = d1.collect()
print(list(temp[0][1]))
print(temp)
[(0, 'cat26', 130.9), (0, 'cat13', 122.1), (0, 'cat95', 119.6), (0, 'cat105', 11.3)]
[(0, <pyspark.resultiterable.ResultIterable object at 0x0000000007D2C710>), (1, <pyspark.resultiterable.ResultIterable object at 0x0000000007D2C780>), (2, <pyspark.resultiterable.ResultIterable object at 0x0000000007D2C898>), (3, <pyspark.resultiterable.ResultIterable object at 0x0000000007D2C9B0>)]
使用mapValues方法对数据进行排序。
可以根据需要来取Top N 数据。
这里取Top 3 的数据
d2 = d1.mapValues(lambda x: sorted(x, key=lambda y:y[2])[:3])
d2.collect()
[(0, [(0, 'cat105', 11.3), (0, 'cat95', 119.6), (0, 'cat13', 122.1)]),
(1, [(1, 'cat23', 15.3), (1, 'cat13', 112.6), (1, 'cat4', 126.8)]),
(2, [(2, 'cat68', 19.8), (2, 'cat187', 127.9), (2, 'cat40', 129.7)]),
(3, [(3, 'cat8', 135.6)])]
使用flatmap方法把结果拉平,变成一个list返回。
d3 = d2.flatMap(lambda x:[i for i in x[1]])
d3.collect()
[(0, 'cat105', 11.3),
(0, 'cat95', 119.6),
(0, 'cat13', 122.1),
(1, 'cat23', 15.3),
(1, 'cat13', 112.6),
(1, 'cat4', 126.8),
(2, 'cat68', 19.8),
(2, 'cat187', 127.9),
(2, 'cat40', 129.7),
(3, 'cat8', 135.6)]
整体代码
from pyspark import SparkContext
# sc = SparkContext()
topN = 3
data_list = [
(0, "cat26", 130.9), (0, "cat13", 122.1), (0, "cat95", 119.6), (0, "cat105", 11.3),
(1, "cat67", 128.5), (1, "cat4", 126.8), (1, "cat13", 112.6), (1, "cat23", 15.3),
(2, "cat56", 139.6), (2, "cat40", 129.7), (2, "cat187", 127.9), (2, "cat68", 19.8),
(3, "cat8", 135.6)
]
data = sc.parallelize(data_list)
d1 = data.groupBy(lambda x:x[0])
d2 = d1.mapValues(lambda x: sorted(x, key=lambda y:y[2])[:topN])
d3 = d2.flatMap(lambda x:[i for i in x[1]])
d3.collect()
[(0, 'cat105', 11.3),
(0, 'cat95', 119.6),
(0, 'cat13', 122.1),
(1, 'cat23', 15.3),
(1, 'cat13', 112.6),
(1, 'cat4', 126.8),
(2, 'cat68', 19.8),
(2, 'cat187', 127.9),
(2, 'cat40', 129.7),
(3, 'cat8', 135.6)]
2、Dataframe方法分组取TopN
dataframe数据格式分组取top N,简单的方法是使用Window方法
from pyspark.sql import SparkSession
from pyspark.sql import functions as func
from pyspark.sql import Window
spark = SparkSession.builder.getOrCreate()
data_list = [
(0, "cat26", 130.9), (0, "cat13", 122.1), (0, "cat95", 119.6), (0, "cat105", 11.3),
(1, "cat67", 128.5), (1, "cat4", 126.8), (1, "cat13", 112.6), (1, "cat23", 15.3),
(2, "cat56", 139.6), (2, "cat40", 129.7), (2, "cat187", 127.9), (2, "cat68", 19.8),
(3, "cat8", 135.6)
]
根据数据创建dataframe,并给数据列命名
df = spark.createDataFrame(data_list, ["Hour", "Category", "TotalValue"])
df.show()
+----+--------+----------+
|Hour|Category|TotalValue|
+----+--------+----------+
| 0| cat26| 130.9|
| 0| cat13| 122.1|
| 0| cat95| 119.6|
| 0| cat105| 11.3|
| 1| cat67| 128.5|
| 1| cat4| 126.8|
| 1| cat13| 112.6|
| 1| cat23| 15.3|
| 2| cat56| 139.6|
| 2| cat40| 129.7|
| 2| cat187| 127.9|
| 2| cat68| 19.8|
| 3| cat8| 135.6|
+----+--------+----------+
使用窗口方法,分片参数为分组的key,
orderBy的参数为排序的key,这里使用desc降序排列。
withColumn(colName, col),为df添加一列,数据为对window函数生成的数据编号
where方法取rn列值小于3的数据,即取top3数据
w = Window.partitionBy(df.Hour).orderBy(df.TotalValue.desc())
top3 = df.withColumn('rn', func.row_number().over(w)).where('rn <=3')
top3.show()
+----+--------+----------+---+
|Hour|Category|TotalValue| rn|
+----+--------+----------+---+
| 0| cat26| 130.9| 1|
| 0| cat13| 122.1| 2|
| 0| cat95| 119.6| 3|
| 1| cat67| 128.5| 1|
| 1| cat4| 126.8| 2|
| 1| cat13| 112.6| 3|
| 3| cat8| 135.6| 1|
| 2| cat56| 139.6| 1|
| 2| cat40| 129.7| 2|
| 2| cat187| 127.9| 3|
+----+--------+----------+---+
### 代码汇总
from pyspark.sql import SparkSession
from pyspark.sql import functions as func
from pyspark.sql import Window
spark = SparkSession.builder.getOrCreate()
data_list = [
(0, "cat26", 130.9), (0, "cat13", 122.1), (0, "cat95", 119.6), (0, "cat105", 11.3),
(1, "cat67", 128.5), (1, "cat4", 126.8), (1, "cat13", 112.6), (1, "cat23", 15.3),
(2, "cat56", 139.6), (2, "cat40", 129.7), (2, "cat187", 127.9), (2, "cat68", 19.8),
(3, "cat8", 135.6)
]
df = spark.createDataFrame(data_list, ["Hour", "Category", "TotalValue"])
w = Window.partitionBy(df.Hour).orderBy(df.TotalValue.desc())
top3 = df.withColumn('rn', func.row_number().over(w)).where('rn <=3')
top3.show()
Spark 两种方法计算分组取Top N的更多相关文章
- 面试题:两种方法计算n!
直接上代码package com.face.test; public class Test { /** * 面试题:递归方法计算n! */ @org.junit.Test public void di ...
- JAVA 集合 List 分组的两种方法
CSDN日报20170219--<程序员的沟通之痛> [技术直播]揭开人工智能神秘的面纱 程序员1月书讯 云端应用征文大赛,秀绝招,赢无人机! JAVA 集合 List 分组的两种方法 2 ...
- 计算理论:NFA转DFA的两种方法
本文将以两种方法实现NFA转DFA,并利用C语言实现. 方法二已利用HNU OJ系统验证,方法一迷之WA,但思路应该是对的,自试方案,测试均通过. (主要是思路,AC均浮云,大概又有什么奇怪的Case ...
- Spark Streaming中空batches处理的两种方法(转)
原文链接:Spark Streaming中空batches处理的两种方法 Spark Streaming是近实时(near real time)的小批处理系统.对给定的时间间隔(interval),S ...
- 【转】oracle 中随机取一条记录的两种方法
oracle 中随机取一条记录的两种方法 V_COUNT INT:=0; V_NUM INT :=0; 1:TBL_MYTABLE 表中要有一个值连续且唯一的列FID BEGIN SELECT COU ...
- 选中没有选中的复选框,匹配含有某个字符串的正则,json取值的两种方法,把变量定义在外面跟里面的区别
一.筛选没有选中的复选框:not("input:checked") 二.匹配有VARCHAR的字符串:".*VARCHAR.*?" 三.json取值的两种方法 ...
- 用Python计算幂的两种方法,非递归和递归法
用Python计算幂的两种方法: #coding:utf-8 #计算幂的两种方法.py #1.常规方法利用函数 #不使用递归计算幂的方法 """ def power(x, ...
- 取xml文件转成List<T>对象的两种方法
读取xml文件转成List<T>对象的两种方法(附源码) 读取xml文件转成List<T>对象的两种方法(附源码) 读取xml文件,是项目中经常要用到的,所以就总结一下,最 ...
- 2014 Super Training #4 G What day is that day? --两种方法
原题: ZOJ 3785 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3785 题意:当天是星期六,问经过1^1+2^2+ ...
随机推荐
- Java实现第十届蓝桥杯特别数的和
试题 F: 特别数的和 时间限制: 1.0s 内存限制: 512.0MB 本题总分:15 分 [问题描述] 小明对数位中含有 2.0.1.9 的数字很感兴趣(不包括前导 0),在 1 到 40 中这样 ...
- 从windows到Mac的那些坑
今年入职一家新公司 公司办公统一使用Mac pro,所有国产软件不允许使用,只允许装国外的.开源的软件,,,,(这对一个从来没用过Mac的人来说,可真是头疼了一阵子) 经过几天的摸索,作一个简单的小总 ...
- ArrayList、LinkedList、Vector、Array和HashMap、HashTable
就 ArrayList 与 Vector 主要从二方面来说. 一.同步性:Vector 是线程安全的,也就是说是同步的,而ArrayList 是线程序不安全的,不是同步的 二.数据增长:当需要增长时, ...
- 基于ABP做一个简单的系统——实战篇:2.代码生成器
上一篇正说着呢,代码生成器就来了. 1.适用于ABP官网的Startup Template V3.x的包含了登录.用户等页面的MPA应用模板2.当前view仅支持文本框生成,远期规划根据字段类型生成不 ...
- 《刻意练习之C#》-0016- C#预处理器指令
预处理指令 这些指令/命令不会转换为可执行代码,但会影响编译过程的各个方面:列如,可以让编译器不编译某一部分代码等. C#中主要的预处理指令 #define和#undef #define指令定义: # ...
- 安装 KubeSphere DevOps 系统
1. 安装KubeSphere 安装了一夜,终于看到了期待已久的画面 第一步.硬件配置(PS:VirtualBox虚拟机): 操作系统:Ubuntu 18.04 CPU:4核 内存:8G 磁盘:60 ...
- Jmeter基础001----jmeter的安装与配置
一.Java环境安装 1.下载jdk----oracal官网 2.JDK版本要求: JMeter2.x- jdk1.6 ...
- jmeter的beanshell
[beanshell] 简单介绍beanshell,小型的java源代码解释器 运行下beanshell [常用命令] print() 输出内容到命令行中 (1)也可以在beanshell中自定义 [ ...
- mongoDB的基本使用方法
MongoDB 安装(乌班图系统) apt install mongodb mongoDB与sql的对比 SQL术语/概念 MongoDB术语/概念 解释/说明 database database 数 ...
- Cookie的简介与使用
Cookie 历来指就着牛奶一起吃的点心.然而,在因特网内,"Cookie"这个字有了完全不同的意思.那么"Cookie"到底是什么呢?"Cookie ...