caffe的python接口学习(5)生成deploy文件
如果要把训练好的模型拿来测试新的图片,那必须得要一个deploy.prototxt文件,这个文件实际上和test.prototxt文件差不多,只是头尾不相同而也。deploy文件没有第一层数据输入层,也没有最后的Accuracy层,但最后多了一个Softmax概率层。
这里我们采用代码的方式来自动生成该文件,以mnist为例。
deploy.py

# -*- coding: utf-8 -*- from caffe import layers as L,params as P,to_proto
root='/home/xxx/'
deploy=root+'mnist/deploy.prototxt' #文件保存路径 def create_deploy():
#少了第一层,data层
conv1=L.Convolution(bottom='data', kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))
pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)
conv2=L.Convolution(pool1, kernel_size=5, stride=1,num_output=50, pad=0,weight_filler=dict(type='xavier'))
pool2=L.Pooling(conv2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))
relu3=L.ReLU(fc3, in_place=True)
fc4 = L.InnerProduct(relu3, num_output=10,weight_filler=dict(type='xavier'))
#最后没有accuracy层,但有一个Softmax层
prob=L.Softmax(fc4)
return to_proto(prob)
def write_deploy():
with open(deploy, 'w') as f:
f.write('name:"Lenet"\n')
f.write('input:"data"\n')
f.write('input_dim:1\n')
f.write('input_dim:3\n')
f.write('input_dim:28\n')
f.write('input_dim:28\n')
f.write(str(create_deploy()))
if __name__ == '__main__':
write_deploy()

运行该文件后,会在mnist目录下,生成一个deploy.prototxt文件。
这个文件不推荐用代码来生成,反而麻烦。大家熟悉以后可以将test.prototxt复制一份,修改相应的地方就可以了,更加方便。
caffe的python接口学习(5)生成deploy文件的更多相关文章
- caffe的python接口学习(1):生成配置文件
caffe是C++语言写的,可能很多人不太熟悉,因此想用更简单的脚本语言来实现.caffe提供matlab接口和python接口,这两种语言就非常简单,而且非常容易进行可视化,使得学习更加快速,理解更 ...
- caffe的python接口学习(5):生成deploy文件
如果要把训练好的模型拿来测试新的图片,那必须得要一个deploy.prototxt文件,这个文件实际上和test.prototxt文件差不多,只是头尾不相同而也.deploy文件没有第一层数据输入层, ...
- caffe的python接口学习(2):生成solver文件
caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面,如下: base_lr: 0.001 display: 782 gamma: 0.1 ...
- caffe的python接口学习(2)生成solver文件
caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面 有一些参数需要计算的,也不是乱设置. 假设我们有50000个训练样本,batch_si ...
- caffe的python接口学习(6)用训练好的模型caffemodel分类新图片
经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测. 我们从mnist数据集的t ...
- caffe的python接口学习(7):绘制loss和accuracy曲线
使用python接口来运行caffe程序,主要的原因是python非常容易可视化.所以不推荐大家在命令行下面运行python程序.如果非要在命令行下面运行,还不如直接用 c++算了. 推荐使用jupy ...
- caffe的python接口学习(6):用训练好的模型(caffemodel)来分类新的图片
经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测. 我们从mnist数据集的t ...
- caffe的python接口学习(4):mnist实例---手写数字识别
深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 ...
- caffe的python接口学习(4)mnist实例手写数字识别
以下主要是摘抄denny博文的内容,更多内容大家去看原作者吧 一 数据准备 准备训练集和测试集图片的列表清单; 二 导入caffe库,设定文件路径 # -*- coding: utf-8 -*- im ...
随机推荐
- Rocket - util - ReduceOthers
https://mp.weixin.qq.com/s/gbR5fuDbE_nUFVxw-p4rsA 简单介绍ReduceOthers的实现. 1. 基本介绍 输入一组Bool元素 ...
- Chisel3 - model - 子模块,顶层模块
https://mp.weixin.qq.com/s/3uUIHW8DmisYARYmNzUZeg 介绍如何构建由模块组成的硬件模型. 1. 子模块 一个模块可以有一个或多个子模块,创建子 ...
- 【asp.net core 系列】3 视图以及视图与控制器
0.前言 在之前的几篇中,我们大概介绍了如何创建一个asp.net core mvc项目以及http请求如何被路由转交给对应的执行单元.这一篇我们将介绍一下控制器与视图直接的关系. 1. 视图 这里的 ...
- Java 第十一届 蓝桥杯 省模拟赛 小明的城堡
小明用积木搭了一个城堡. 为了方便,小明在搭的时候用的是一样大小的正方体积本,搭在了一个 n 行 m 列的方格图上,每个积木正好占据方格图的一个小方格. 当然,小明的城堡并不是平面的,而是立体的.小明 ...
- Java实现 LeetCode 222 完全二叉树的节点个数
222. 完全二叉树的节点个数 给出一个完全二叉树,求出该树的节点个数. 说明: 完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集 ...
- Java实现 LeetCode 179 最大数
179. 最大数 给定一组非负整数,重新排列它们的顺序使之组成一个最大的整数. 示例 1: 输入: [10,2] 输出: 210 示例 2: 输入: [3,30,34,5,9] 输出: 9534330 ...
- Java中构造方法的详细介绍
构造方法是一个特殊的方法 它会在实例化对象时自动调用 构造方法的定义 必须同时满足下面的三个条件 方法名与类名相同 方法名前面没有返回值类型的声明 在方法中不能使用return语句返回值 class ...
- 第六届蓝桥杯JavaA组国(决)赛真题
解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.胡同门牌号 小明家住在一条胡同里.胡同里的门牌号都是连续的正整数,由于历史原因,最小的号码并不是从1开始排的. 有一天小明突然发现了有 ...
- mysql 大表mysqldump迁移方案
场景 一张历史表product_history 500万数据,凌晨的才会将正式表的数据迁移到历史表,此次需求将历史表迁移到一个更便宜的数据库实例进行存储. 条件 1.此表不是实时写,凌晨才会更新 2. ...
- Prometheus监控Docker Swarm集群(一)
Prometheus监控Docker Swarm集群(一) cAdvisor简介 为了解决容器的监控问题,Google开发了一款容器监控工具cAdvisor(Container Advisor),它为 ...