import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets
import os # do not print irrelevant information
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# x: [60k,28,28], [10,28,28]
# y: [60k], [10k]
(x, y), (x_test, y_test) = datasets.mnist.load_data()
# transform Tensor
# x: [0~255] ==》 [0~1.]
x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
y = tf.convert_to_tensor(y, dtype=tf.int32) x_test = tf.convert_to_tensor(x_test, dtype=tf.float32) / 255.
y_test = tf.convert_to_tensor(y_test, dtype=tf.int32)
# batch of 128
train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(128)
train_iter = iter(train_db)
sample = next(train_iter)
# [b,784] ==> [b,256] ==> [b,128] ==> [b,10]
# [dim_in,dim_out],[dim_out]
w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
b1 = tf.Variable(tf.zeros([256]))
w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
b2 = tf.Variable(tf.zeros([128]))
w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))
# learning rate
lr = 1e-3
for epoch in range(10):  # iterate db for 10
# tranin every train_db
for step, (x, y) in enumerate(train_db):
# x: [128,28,28]
# y: [128] # [b,28,28] ==> [b,28*28]
x = tf.reshape(x, [-1, 28 * 28]) with tf.GradientTape(
) as tape: # only data types of tf.variable are logged
# x: [b,28*28]
# h1 = x@w1 + b1
# [b,784]@[784,256]+[256] ==> [b,256] + [256] ==> [b,256] + [b,256]
h1 = x @ w1 + tf.broadcast_to(b1, [x.shape[0], 256])
h1 = tf.nn.relu(h1)
# [b,256] ==> [b,128]
# h2 = x@w2 + b2 # b2 can broadcast automatic
h2 = h1 @ w2 + b2
h2 = tf.nn.relu(h2)
# [b,128] ==> [b,10]
out = h2 @ w3 + b3 # compute loss
# out: [b,10]
# y:[b] ==> [b,10]
y_onehot = tf.one_hot(y, depth=10) # mse = mean(sum(y-out)^2)
# [b,10]
loss = tf.square(y_onehot - out)
# mean:scalar
loss = tf.reduce_mean(loss) # compute gradients
grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])
# w1 = w1 - lr * w1_grad
# w1 = w1 - lr * grads[0] # not in situ update
# in situ update
w1.assign_sub(lr * grads[0])
b1.assign_sub(lr * grads[1])
w2.assign_sub(lr * grads[2])
b2.assign_sub(lr * grads[3])
w3.assign_sub(lr * grads[4])
b3.assign_sub(lr * grads[5]) if step % 100 == 0:
print(f'epoch:{epoch}, step: {step}, loss:{float(loss)}') # [w1,b1,w2,b2,w3,b3]
total_correct, total_num = 0, 0
for step, (x, y) in enumerate(test_db):
# [b,28,28] ==> [b,28*28]
x = tf.reshape(x, [-1, 28 * 28]) # [b,784] ==> [b,256] ==> [b,128] ==> [b,10]
h1 = tf.nn.relu(x @ w1 + b1)
h2 = tf.nn.relu(h1 @ w2 + b2)
out = h2 @ w3 + b3 # out: [b,10] ~ R
# prob: [b,10] ~ (0,1)
prob = tf.nn.softmax(out, axis=1)
# [b,10] ==> [b]
pred = tf.argmax(prob, axis=1)
pred = tf.cast(pred, dtype=tf.int32)
# y: [b]
# [b], int32
correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
correct = tf.reduce_sum(correct) total_correct += int(correct)
total_num += x.shape[0]
acc = total_correct / total_num
print(f'test acc: {acc}')

吴裕雄--天生自然TensorFlow2教程:测试(张量)- 实战的更多相关文章

  1. 吴裕雄--天生自然TensorFlow2教程:张量限幅

    import tensorflow as tf a = tf.range(10) a # a中小于2的元素值为2 tf.maximum(a, 2) # a中大于8的元素值为8 tf.minimum(a ...

  2. 吴裕雄--天生自然TensorFlow2教程:张量排序

    import tensorflow as tf a = tf.random.shuffle(tf.range(5)) a tf.sort(a, direction='DESCENDING') # 返回 ...

  3. 吴裕雄--天生自然TensorFlow2教程:前向传播(张量)- 实战

    手写数字识别流程 MNIST手写数字集7000*10张图片 60k张图片训练,10k张图片测试 每张图片是28*28,如果是彩色图片是28*28*3-255表示图片的灰度值,0表示纯白,255表示纯黑 ...

  4. 吴裕雄--天生自然TensorFlow2教程:手写数字问题实战

    import tensorflow as tf from tensorflow import keras from keras import Sequential,datasets, layers, ...

  5. 吴裕雄--天生自然TensorFlow2教程:函数优化实战

    import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def himme ...

  6. 吴裕雄--天生自然TensorFlow2教程:反向传播算法

  7. 吴裕雄--天生自然TensorFlow2教程:链式法则

    import tensorflow as tf x = tf.constant(1.) w1 = tf.constant(2.) b1 = tf.constant(1.) w2 = tf.consta ...

  8. 吴裕雄--天生自然TensorFlow2教程:多输出感知机及其梯度

    import tensorflow as tf x = tf.random.normal([2, 4]) w = tf.random.normal([4, 3]) b = tf.zeros([3]) ...

  9. 吴裕雄--天生自然TensorFlow2教程:单输出感知机及其梯度

    import tensorflow as tf x = tf.random.normal([1, 3]) w = tf.ones([3, 1]) b = tf.ones([1]) y = tf.con ...

随机推荐

  1. chart 模板【转】

    Helm 通过模板创建 Kubernetes 能够理解的 YAML 格式的资源配置文件,我们将通过例子来学习如何使用模板. 以 templates/secrets.yaml 为例: 从结构看,文件的内 ...

  2. 安装hue时,make apps 编译报错

    安装hue时,make apps 编译报错 :"Error: must have python development packages for 2.6 or 2.7. Could not ...

  3. XV6源代码阅读-中断与系统调用

    Exercise1 源代码阅读 1.启动部分: bootasm.S bootmain.c 和xv6初始化模块:main.c bootasm.S 由16位和32位汇编混合编写成的XV6引导加载器.boo ...

  4. 前端IT攻城狮--网址搜藏(-- 欢迎留言补充 --)

    一. 插件 1.validator: https://validator.niceue.com/docs/                 (一款专业表单验证插件) 2.jQuery Tabs-Eas ...

  5. 052、Java中使用do…while循环实现1~100的累加

    01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...

  6. 035、Java中自增之++在后面的写法

    01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...

  7. memortstream Base64编码和filestream base64编码不同

    memorystream base64 function BaseImage(fn: string): string; var   m1: TMemoryStream;   m2: TStringSt ...

  8. 使用conda创建虚拟环境

    conda创建python虚拟环境 前言 conda常用的命令: conda list 查看安装了哪些包. conda env list 或 conda info -e 查看当前存在哪些虚拟环境 co ...

  9. js实现连续输入之后发送请求

    输入框是我们经常会用到的功能,想要实现输入就请求的功能 但是在实际开发中,为了减少服务器压力,会在输入之后停留1s没有输入之后再进行搜索 研究之后用原生js及表单写了一个简单的demo,如果有好的de ...

  10. Mac电脑上怎么设置环境变量

    https://jingyan.baidu.com/article/8065f87f47b29523312498e4.html 环境变量是电脑操作系统中常用的一些变量,作用类似于将一些常用命令所在的文 ...